Dibujo Técnico: La escala gráfica

Podemos definir una escala gráfica como las dimensiones reales de un objeto que son expresadas mediante un instrumento graduado (generalmente una regla o reglilla) el cual se coloca en el dibujo o plano con el fin de apreciar directamente las dimensiones del objeto en la realidad, sin necesidad de tener que calcular la escala mediante operaciones matemáticas. La gran ventaja de una escala gráfica por sobre una tradicional es que siempre conservaremos la proporción entre las dimensiones del dibujo en el plano y sus medidas reales, en el caso que debamos o queramos ampliar o reducir el tamaño del plano original. La escala tradicional o numérica en cambio, es la razón de ampliación/reducción de la medida real respecto a la del dibujo, y se expresa mediante valores como 1:100, 1:50, etc.

La mejor forma de determinar una escala gráfica de manera más o menos sencilla (expresando tanto su dimensión real como su dimensión en el dibujo) es utilizando dos rectas que formen un ángulo agudo arbitrario. La primera de ellas es donde se determinará la dimensión real mientras que en la segunda tendremos la dimensión que se definirá en el dibujo. Lo que haremos a continuación es definir el la magnitud en la realidad y luego su equivalencia en el dibujo, para finalmente unir los extremos de estas y formar un triángulo, tal como se aprecia en el ejemplo siguiente:

Representación gráfica de la escala 1:5. En este caso la escala representa 5 cms en la realidad equivalentes a 1 cm en el dibujo.

Si queremos determinar otras magnitudes en la misma escala gráfica, podremos utilizar el teorema de Thales de triángulos semejantes para obtener las siguientes dimensiones ya que nos bastará colocar la medida real en la recta respectiva y luego trazar la paralela de la línea resultante hacia la recta del dibujo, como se ilustra en la imagen siguiente:

En el ejemplo, se calcula mediante el teorema de Thales la representación en el dibujo que tendrían 10 cms reales, dándonos como resultado 2 cms en el dibujo. En este ejemplo, la ecuación sería la siguiente:

1 = 5 => X = 2
X   10

Notaremos que en los ejemplos anteriores tenemos una recta opuesta en la cual se ha hecho una división mediante paralelas utilizando el ya clásico teorema de Thales. Esto lo definiremos como contraescala la cual representa la unidad de la escala gráfica divida por diez o lo más común, la medida total que va entre “0” y “1”, y que se denomina así porque se dibuja en el sentido contrario al “0”. Esto se puede representar de la siguiente manera gracias al teorema de Thales:

A raíz de estas operaciones entre rectas y dimensiones obtendremos una recta la cual puede expresarse mediante una reglilla o Escala gráfica, la cual podremos representar en los planos para indicar las dimensiones reales del proyecto sin necesidad de utilizar el escalímetro, tal como se aprecia en el siguiente ejemplo:

Representación de las escalas gráficas

Las escalas gráficas se representan, en la mayoría de los casos, mediante una “reglilla” que se expresa mediante rectángulos adyacentes con medidas que representarán los metros o centímetros, milímetros o alguna otra medida que se use para definir el objeto o plano según sea el caso. Para facilitar su lectura se suelen contrastar la mitad de sus cuadros pintándolos de negro.

La característica más importante de este tipo de escalas es el hecho que siempre están moduladas según el primer valor, y la ampliación o reducción de la escala variará en la cantidad de “divisiones” o decenas, centenas, millares, etc que utilicemos. En la siguiente imagen vemos distintas escalas de Arquitectura representadas mediante escalas gráficas, donde notamos que la medida base de todas ellas es 10 mm (1 cm) la cual tendrá distintas equivalencias dependiendo de la escala que utilicemos.

En el ejemplo notaremos que en la escala 1:100 tenemos 1 cm=1 mt, lo cual coincide con la medida base de 10 mm. En 1:50 en cambio, tendremos 1 cm=0,5 mts (medio metro) mientras que en escalas más pequeñas como 1:500 tendremos 1 cm=5 mts.

Como ya se había mencionado antes, si colocamos esta escala gráfica sobre el plano podremos calcular de forma directa la distancia real existente entre dos puntos de este. Como norma general y en lo posible, en una escala gráfica se deben colocar las dimensiones de la unidad real en la que se está trabajando el plano e indicar la unidad de trabajo de esta, usualmente colocado en la última cifra de la reglilla.

En la imagen siguiente vemos distintos tipos de representación de escalas gráficas que podremos utilizar para nuestros planos. Para facilitar la lectura podemos aumentar el intervalo a medida que la dimensión sea mayor, siempre y cuando conservemos la medida base entre 0 y 1 y respetemos la modulación de esta para nuestra escala gráfica.

Lectura del escalímetro

Gracias al concepto de escala gráfica podremos leer sin problemas el escalímetro ya que este instrumento utiliza el mismo principio de la medida base. Como ya sabemos, un escalímetro es una regla graduada que posee generalmente de 6 a 12 escalas diferentes que pueden ser leídas de forma directa puesto que este posee las equivalencias ya resueltas.

Estas escalas pueden identificarse mediante diferentes colores en el escalímetro, de acuerdo con la siguiente imagen:

Los colores identifican las siguientes escalas:

Rojo: 1:75, 1:750, 1:125, 1:1250.

Amarillo: 1:20, 1:200, 1:10, 1:100.

Verde: 1:50, 1:500, 1:25, 1:250.

Para leer el escalímetro bastará con leer la medida correspondiente en cada escala, ya que por defecto la graduación se encuentra en mts o cms dependiendo de la escala en la que trabajamos. En la imagen siguiente podremos ver un ejemplo de lectura en distintas escalas utilizando una medida base de 40 mm (4 cms), y su equivalencia en el escalímetro:

En el ejemplo se lee el escalímetro en escalas 1:50, 1:500, 1:10, 1:100, 1:20, 1:200, 1:25 y 1:250. Notamos que en escala 1:50 los 4 cms se leen como 2 mts, mientras que en 1:500 equivaldrán a 20 mts usando la misma medida. También notamos que en el caso de escalas mayores como 1:10, 1:20 y 1:25, los valores numéricos están expresados en cms en lugar de mts.

Este es el final de este apunte.

Dibujo Técnico: Trazados geométricos fundamentales parte 3, enlaces

Definición de enlace

Se define como enlace a la unión armónica entre dos líneas de cualquier tipo (curvas o rectas) de tal forma que se forme una línea continua. En el caso de los enlaces, estos se deben realizar mediante puntos de tangencia o de enlace para que estos funcionen de forma correcta. Los tres tipos de enlace que existen son:

– Enlace entre dos rectas.
– Enlace entre una curva y una recta.
– enlace entre dos curvas.

En esta tercera parte de los trazados fundamentales realizaremos mediante instrumentos los enlaces típicos que debemos dominar al iniciar el dibujo técnico de cualquier pieza, vista o proyecto de forma manual aunque también es válido para el dibujo en AutoCAD y/o práctica.

Las operaciones principales que realizaremos en esta oportunidad son:

1) Enlace entre dos rectas paralelas.
2) Enlace entre dos rectas perpendiculares.
3) Enlace entre dos rectas no paralelas.
4) Enlace entre una recta y una curva.
5) Enlace entre dos curvas.

1) Enlazar dos rectas paralelas

Sean dos rectas paralelas dadas:

Unimos en un segmento los extremos de las paralelas (puntos A y B) y realizamos la simetral de este, obteniendo el punto central m.

Tomando como centro el punto m recién creado, y usando como radio Am, trazamos la semicircunferencia para lograr el enlace pedido.

El resultado de la operación es el siguiente:

2) Enlazar dos rectas perpendiculares

Sean dos rectas perpendiculares dadas:

Si estas no se intersectan, las proyectaremos para lograr la intersección.

Ahora realizaremos paralelas a ambas rectas, de modo que la distancia sea la misma respecto a cada recta. Podemos realizar las paralelas con un radio base R para después medir la perpendicular entre las paralelas (N) o directamente con escuadra daremos una medida a la distancia respecto a las líneas. La intersección de estas paralelas nos darán los puntos o, a y c.

Haciendo centro en o y con la medida definida por el radio (N) o en la escuadra, dibujamos el arco de circunferencia el cual es el enlace pedido.

Procedemos a borrar las líneas innecesarias para terminar el enlace. El resultado de la operación es el siguiente:

Si queremos hacer las paralelas y dar una distancia definida N sin necesidad de usar la escuadra, debemos utilizar la paralela con distancia asignada ya vista en el apunte de trazados geométricos fundamentales.

3) Enlazar dos rectas o segmentos no paralelos

Sean dos rectas y/o segmentos no paralelos dados:

Si estas no se intersectan, proyectaremos una o ambas para lograr la intersección. La idea es obtener un ángulo entre ambas. Notamos que a los extremos del semento proyectado se le han asignado los puntos p y q.

Ahora realizamos la bisectriz de este ángulo. Con esto formaremos los puntos m, n y o.

Proyectamos la perpendicular al primer punto de la recta proyectada (p) de modo que la intersección entre esta y la línea de la bisectriz nos genere el punto r.

Haciendo centro en r y con radio pr, proyectamos un arco que irá desde el punto p hasta la recta.

Borramos las líneas innecesarias y obtenemos el resultado final:

4) Enlazar una recta con una curva

Sean una recta y una curva dadas:

Proyectamos la recta para iniciar el dibujo y lo mismo realizamos con la curva. En este último caso, definiremos el centro (c) y proyectaremos sus extremos, los cuales definen los puntos d y e. Su radio será R.

Realizaremos una línea paralela a la recta. Podemos realizar la paralela mediante geometría para definir una distancia X arbitraria o definir esta directamente con una escuadra.

Ahora debemos generar una curva paralela interior la cual se definirá tomando el centro de esta (punto c) y definiendo como radio R-X (radio de la curva menos la distancia X definida). La intersección de esta curva con la paralela a la recta nos genera el punto o.

 

Tomando como centro el punto o y como radio do, realizamos un arco que irá desde el punto d hasta la recta. Esto formará el enlace pedido.

 

Si es necesario, borramos las líneas innecesarias y obtenemos el resultado final:

5) Enlazar dos curvas

Sean dos curvas dadas:

Definimos el centro de las curvas y proyectamos sus extremos con este. Los radios de las curvas serán R1 y R2 respectivamente. En la curva más abierta definimos los puntos a y b ya que enlazaremos esta a la más cerrada.

Ahora asignaremos un radio R arbitrario y tomando como “centro” el centro de la primera curva (C1), dibujamos un arco el cual tendrá por radio R1+R.

Ahora repetiremos el proceso pero esta vez el radio será R2-R, y tomaremos como centro el punto C2. La idea es que los arcos se realicen en el mismo sentido (en el caso de la primera curva el arco paralelo está fuera de la curva, mientras que en la segunda este se encuentra dentro, cerca del centro) para formar el punto de intersección o.

Proyectamos los centros hacia el punto o formando los segmentos C1o y C2o.

Tomando como centro el punto o y como radio ao, realizamos un arco que irá desde el punto a hasta la intersección entre la curva C1 y el segmento C1o. Esto formará el enlace pedido.

Borramos las líneas innecesarias y obtenemos el resultado final:

El dominio y manejo de estos trazados fundamentales es la clave para realizar buenos dibujos técnicos, tanto si dibujamos a mano como también mediante software como AutoCAD.

Dibujo Técnico: Trazados geométricos fundamentales parte 2, tangencias

Definición de la tangente

Se define como tangente a una recta que se intersecta con un punto de una circunferencia, y que define un angulo recto entre la recta y el segmento proyectado entre el punto y el centro de esta. Podemos demostrar esto fácilmente si en el eje de coordenadas trazamos una circunferencia de radio 1, una recta que que esté en el lado positivo del eje X, parta desde el origen y forme un ángulo, y un trazo perpendicular a la recta que parta desde la intersección entre esta y la circunferencia:

Aplicando trigonimetría determinamos que el trazo ab es la tangente del ángulo ya que ao = 1, y por ende del punto “a” de la circunferencia. Por definición, la recta tangente es única para cada punto de la circunferencia.

En esta segunda parte de los trazados geométricos fundamentales realizaremos mediante instrumentos los trazados de tangencias genéricos que debemos dominar al iniciar el dibujo técnico de cualquier pieza, vista o proyecto de forma manual aunque también es válido para el dibujo en AutoCAD y/o práctica.

Las operaciones principales que realizaremos en esta oportunidad son:

1) Tangentes entre un punto y una circunferencia.
2) Tangentes externas entre dos circunferencias.
3) Tangentes internas entre dos circunferencias.
4) Circunferencia tangente a otras dos.

1) Trazar las tangentes entre un punto y una circunferencia

Sean el punto P y la circunferencia de centro C2 dados:

Unimos en un trazo el punto P con el centro de la circunferencia, y realizamos la simetral de este obteniendo el punto m.

Realizamos un círculo completo tomando como centro el punto m y como radio el trazo Pm. Con esto obtenemos los puntos a y b.

Los puntos a y b son los puntos de enlace pedidos, para terminar sólo bastará trazar las rectas entre cada punto y el punto P.

2) Trazar las tangentes externas entre dos círculos

Sean las circunferencias de centros C1 y C2 y radios R1 y R2 dadas:

Unimos ambos centros con un único trazo y realizamos la simetral de este, obteniendo el punto m.

Tomando como centro el punto de intersección entre el trazo y el círculo mayor (n), realizamos un arco el cual tendrá como radio el mismo del círculo 1 (R1). Esto nos permitirá definir el punto g.

Ahora realizaremos un círculo tomando como centro C2 y como radio el trazo gC2.

Realizamos un círculo completo tomando como centro el punto m y como radio el trazo C1m. Con esto obtenemos los puntos d y e.

Ahora proyectamos trazos entre los puntos C2, d y e de tal forma que estos intersecten al círculo mayor, y de esta manera obtenemos los puntos c y f los cuales son los puntos de enlace del círculo.

Lo que corresponde ahora es copiar las líneas en el círculo menor, de tal manera que se formen los puntos a y b y que los segmentos C1a y C2c sean paralelos, lo mismo en el caso de los segmentos C1b y C2f.

Finalmente trazamos las rectas entre los puntos a y c, y entre b y f para generar lo pedido.

3) Trazar las tangentes internas entre dos círculos

Sean las circunferencias de centros C1 y C2 y radios R1 y R2 dadas:

Unimos ambos centros con un único trazo y realizamos la simetral de este, obteniendo el punto m.

Realizamos un círculo completo tomando como centro el punto m y como radio el trazo C1m.

Ahora tomaremos como radio la suma de R1 y R2 (R1+R2), y realizamos un círculo tomando como centro el del círculo mayor (C2). Con esto obtenemos los puntos c y d.

Trazamos líneas entre los puntos C2, c y d. Esto nos permitirá obtener los puntos c’ y d’ que son los puntos de enlace para el círculo mayor.

Lo que corresponde ahora es copiar las líneas en el círculo menor, de tal manera que se formen los puntos a y b y que los segmentos C1a y C2d sean paralelos, lo mismo en el caso de los segmentos C1b y C2c. Los puntos a y b son los enlaces del círculo menor.

Finalmente trazamos las rectas entre los puntos a y d’, y entre b y c’ para generar lo pedido.

4) Trazar una circunferencia tangente a dos circunferencias

Sean las circunferencias de centros C1 y C2 y radios R1 y R2 dadas:

Asignamos un radio R cualquiera de tal modo que sea mayor que la mitad del espacio entre las circunferencias y haciendo centro en C1, realizamos un arco tomando como radio la suma entre R y el radio R1 del círculo menor (R1+R).

Repetimos el proceso pero esta vez haciendo centro en C2, en este caso realizamos el arco tomando como radio la suma entre el radio R2 del círculo mayor y R (R2+R). La intersección entre ambos arcos nos define el punto c.

Ahora trazamos una recta que irá desde el centro C2 hasta el punto c. Con esto formamos el punto a el cual es el punto de enlace del círculo mayor.

Trazamos otra recta que irá desde el centro C1 hasta el punto c. Con esto formamos el punto b el cual es el punto de enlace del círculo menor.

Finalmente, tomando como centro en el punto c y con radio cb (el cual es el radio R previamente definido), trazamos la circunferencia tangente pedida.

 

En la tercera parte de los trazados geométricoa fundamentales realizaremos trazados de enlace, ya que estos están relacionados con los trazados básicos y con las tangencias vistas en este apunte.

Dibujo Técnico: Trazados geométricos fundamentales

En este nuevo apunte de dibujo realizaremos mediante instrumentos los trazados geométricos básicos que debemos dominar al iniciar el dibujo técnico de cualquier pieza, vista o proyecto de forma manual aunque también es válido para el dibujo en AutoCAD y/o práctica. Este tipo de trazados básicos son la clave para desarrollar trazos más complejos como tangencias y enlaces.

Las operaciones principales que realizaremos en esta primera parte del apunte son las siguientes:

1) Dividir un segmento en “N” partes iguales.
2) Copiar un ángulo.
3) Simetral o mediatriz de un segmento.
4) Bisectriz de un ángulo.
5) Perpendicularidad a partir de un punto conocido fuera del segmento.
6) Perpendicularidad en un punto cualquiera dentro de un segmento.
7) Paralelismo (recta paralela a otra), con o sin distancia asignada.
8) Arco capaz de un ángulo.

1) Dividir un segmento en partes iguales

La operación consiste en dividir de forma geométrica un segmento en “N” partes iguales sin necesidad de hacer cálculo alguno, no importando el largo o tamaño del segmento.

Sea el segmento AB dado:

Tomando como inicio el punto A, dibujaremos una recta de medida N (ampliable) en un ángulo cualquiera, de preferencia no tan cerca o “pegado” respecto del segmento AB (30° a 45° es lo recomendable).

Realizamos un arco de círculo tomando como centro el punto A de un radio X arbitrario.

Tomando como centro la intersección entre el arco y la recta, repetimos el mismo radio las veces que queramos dividir el segmento (en el ejemplo es 4).

Tomando el último punto de intersección entre el arco y la recta dibujaremos un segmento entre esta y el otro extremo del segmento AB (punto B).

Finalmente, realizamos rectas paralelas a la línea recién creada que pasen por la intersección entre cada arco y recta formando así los puntos 1, 2 y 3; y terminando la división del segmento.

2) Copiar un ángulo a un trazo o segmento

La operación consiste en hacer una copia fiel de un ángulo dado a un trazo o segmento ya establecido.

Sea un ángulo y el segmento AB dados:

Tomando como centro el inicio del ángulo generamos un arco de círculo de magnitud R de tal modo que intersecte a ambas rectas. Realizamos el mismo arco en el segmento tomando como centro el punto A. Se forman los puntos m y n en el ángulo.

Tomando como radio los puntos m y n (Q), realizamos un arco en el segmento AB tomando como centro la intersección entre el arco y el segmento. Con esto obtenemos el punto m.

Finalmente unimos el punto A con el punto m formado en el segmento AB, y ya tenemos el ángulo copiado.

3) Generar la mediatriz (simetral) de un segmento

La operación consiste en encontrar de forma geométrica el trazo perpendicular que a su vez marca el punto medio o la mitad de un trazo o segmento.

Sea el segmento AB dado:

Tomando como centro el punto A, realizamos un arco de círculo de tal modo que a simple vista sea mayor que la mitad del segmento, con un radio R arbitrario.

Repetimos el mismo proceso pero esta vez tomando como centro el punto B. Obtenemos los puntos c y d.

Finalmente unimos los puntos c y d para obtener la simetral o mediatriz y el punto m, que es la mitad del segmento.

4) Generar la bisectriz o bisectar un ángulo

La operación consiste en dividir de forma geométrica un ángulo dado en dos mitades, es decir, dos ángulos de igual medida que sumados nos dan el ángulo inicial.

Sea el ángulo ABC dado:

Tomando como centro el punto A, generamos un arco de círculo de magnitud R (arbitraria) de tal modo que intersecte a ambas rectas AC y AB. Obtenemos los puntos m y n en el ángulo.

Tomando como centro el punto m, generamos un arco de círculo de magnitud Q (arbitraria) de tal modo que ocupe el mayor espacio interno posible del ángulo o que intersecte a este. Obviamente, también podemos usar el primer radio (R) para realizar este procedimiento.

Repetimos el mismo proceso pero esta vez tomando como centro el punto n. Obtenemos el punto o.

Finalmente unimos los puntos A y o para obtener la bisectriz pedida.

 

5) Generar la perpendicular de un segmento que pase por un punto conocido fuera de este

La operación consiste en generar de forma geométrica una línea perpendicular al segmento y que a su vez pasa por un punto ya conocido fuera de este.

Sean el segmento AB y el punto P dados:

Tomando como centro el punto P y con un radio R dado, generamos un arco de tal modo que este intersecte con el segmento, formando los puntos m y n.

Tomando como centro el punto m y con un radio S de tal modo que este sea a simple vista mayor que la mitad del trazo mn, generamos un arco de circunferencia.

Repetimos el proceso pero esta vez tomamos el punto n como centro, obteniendo el punto t.

Finalmente unimos los puntos t y P para obtener la perpendicular pedida.

6) Generar la perpendicular a un punto cualquiera dentro de un segmento

La operación consiste en generar de forma geométrica una línea perpendicular al segmento y que a su vez pase por cualquier punto dentro de este, sin necesidad de un punto externo.

Sea el segmento AB dado:

En este caso generaremos la perpendicular en el punto A. Por ello, proyectamos el trazo AB hacia la izquierda de este.

Tomamos como centro el punto A y con un radio R dado, generamos una semicircunferencia de tal modo que esta intersecte entre las rectas.

Ahora tomamos como centro la primera intersección entre la proyección del trazo AB y el arco, y con un radio S dado generamos un arco para obtener el punto m.

Repetimos el proceso pero esta vez tomamos la otra intersección como centro, obteniendo el punto n.

Ahora tomamos como centro el punto m y con un radio T de tal modo que este sea mayor a la mitad del trazo mn, generamos un arco de circunferencia.

Repetimos el proceso pero esta vez tomamos el punto n como centro, obteniendo el punto o.

Finalmente unimos los puntos o y A para obtener la perpendicular pedida.

7) Generar la paralela a un segmento o recta

a)  generar la paralela sin una distancia específica:

La operación consiste en generar de forma geométrica una línea paralela al segmento o la recta dada.

Sea el segmento AB dado:

Tomamos un punto cualquiera del segmento (puede ser el centro, por ejemplo) y desde allí generamos una semicircunferencia de tal modo que esta intersecte con el segmento, formando los puntos m y n.

 

Tomando como centro el punto m y con un radio S definido, definimos un arco de tal forma que intersecte al semicírculo ya creado, obteniendo el punto t.

Repetimos el proceso pero esta vez tomamos el punto n como centro, obteniendo el punto u.

Finalmente trazamos una línea entre los puntos t y u formando la línea paralela pedida. En este caso la distancia perpendicular entre ambas no es el radio S sino que es un valor un poco menor que este.

b)  generar la paralela agisnando una distancia perpendicular específica entre ellas:

En este caso lo que haremos primero será realizar las perpendiculares en dos puntos cualquiera dentro del segmento (puntos m y n). Una vez obtenida la recta, debemos proyectarla hacia arriba.

Luego definimos un radio arbitrario (d), el cual será la distancia que asignaremos entre las líneas paralelas. Tomando como centro los puntos m y n y usando el radio d, realizamos arcos de circunferencia de tal modo que cada uno de estos intersecte a la recta perpendicular proyectada, formando los puntos de intersección t y u.

Unimos los puntos t y u y con ello obtenemos la paralela pedida, esta vez con una distancia perpendicular d asignada entre ellas.

8) Generar el arco capaz de un ángulo

La operación consiste en generar de forma geométrica un arco en el cual todos sus ángulos proyectados desde los extremos del segmento que lo contiene tengan el mismo valor del ángulo inicial. El arco capaz se define como el lugar geométrico de los vértices de los ángulos que tienen la misma amplitud y abarcan un mismo segmento.

Sean un ángulo de X° y un segmento AB dados:

Primeramente, realizaremos la simetral del trazo AB para obtener el punto m y posteriormente proyectaremos la perpendicular obtenida hacia arriba.

En el trazo copiaremos el ángulo Xº de tal forma que nos quede debajo del trazo AB con elpunto A como inicio de este.

Ahora generaremos la perpendicular en el ángulo Xº de tal forma que la proyección de la perpendicular se intersecte con la vertical de la simetral del segmento AB, obteniendo el punto o.

Finalmente, tomando como centro el punto o y con radio Ao, dibujamos un arco de circunferencia que intersecta a los puntos A y B. Este es el arco capaz del ángulo Xº pedido.

Podemos comprobar esto trazando ángulos hacia cualquiera de los puntos de este arco y tomando los puntos A y B como extremos de este, donde notamos que el valor de todos es Xº.

Otras relaciones importantes

Elementos notables de un triángulo:

Alturas: son los segmentos perpendiculares que van desde un vértice hacia el lado opuesto de este. Las alturas confluyen en un punto llamado Ortocentro (h) el cual puede estar dentro, coincidir con un vértice o fuera del triángulo según el tipo de triángulo.

De esto mismo podemos concluir que el Ortocentro (h) será externo en triángulos obtusángulos, coincidirá con el vértice del ángulo recto en caso de un triángulo rectángulo, y será interno si el triángulo es acutángulo.

Bisectriz: son las bisectrices de cada uno de los ángulos internos del triángulo. Las bisectrices confluyen en un punto llamado Incentro (I) el cual a su vez es el centro de la circunferencia que se inscribe en el interior del triángulo (circunferencia inscrita).

Por lógica el incentro (I) siempre está en el interior de triángulo, independiente de su tipo.

Simetral: son las simetrales o mediatrices de cada uno de los lados del triángulo. Las simetrales confluyen en un punto llamado Circuncentro (o) el cual a su vez es el centro de la circunferencia que se circunscribe en el exterior del triángulo y por ende, está a igual distancia de cada vértice (circunferencia circunscrita).

El circuncentro puede estar dentro o fuera del triángulo según el tipo o forma de este.

Medianas: son los segmentos que van desde un vértice hacia el punto medio del lado opuesto de este. Las medianas confluyen en un punto llamado Baricentro o centro de gravedad (g).

La mediana divide el triángulo en dos triángulos más pequeños pero que tienen la misma área. En cada mediana, la distancia entre el baricentro y su punto de origen es 2/3 de la longitud total de la mediana respecto a la distancia entre el baricentro y el lado opuesto, que es el 1/3 restante.

En un segundo y tercer apunte veremos trazos más complejos como tangencias y enlaces de líneas y curvas.

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas

Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son:

Isométrica (ortogonal)

Militar (oblicua)

Caballera (oblicua)

Cónica o de visión real

Algunas consideraciones generales sobre perspectivas

– La perspectiva isométrica describe el tamaño real de los objetos en sus dimensiones y es la base para la proyección ortogonal, sin embargo es una perspectiva «irreal» respecto a la percepción del ojo humano. Esta perspectiva nos permite representar de forma eficiente un objeto tridimensional en un espacio bidimensional.

– Las perspectivas militar y caballera son oblicuas y no ortogonales, por lo tanto en algunas de sus caras podremos ver las dimensiones reales pero en otras habrá distorsión. Y también son perspectivas «irreales» en cuanto a la percepción del ojo humano.

– La perspectiva de tipo cónico NO define las dimensiones reales de los elementos pues hay distorsión de estas, ya que este tipo de perspectiva emula la percepción espacial del ojo humano.

La ciudad ideal (1475), obra de Piero della Francesca que nos muestra una perspectiva cónica.

Waterfall (1961), obra de M.C. Escher que nos muestra una perspectiva isométrica y de paso una de sus limitaciones.

Perspectiva cónica o de visión real

Es un sistema de representación gráfico basado en la proyección de un cuerpo tridimensional sobre un plano auxiliándose en rectas proyectantes que pasan por un punto de visión. El resultado se aproxima a la visión obtenida si el ojo humano estuviera situado en dicho punto. Se denomina «cónica» pues la proyección de las rectas proyectantes es en forma de cono, y es el principio base para artefactos como la cámara de video.

Es la que más se aproxima a la visión real, y equivale a la imagen que observamos al mirar un objeto con un solo ojo. Nos permite percibir una profundidad espacial parecida a la visión estereoscópica o binocular. Actualmente esta perspectiva es la base de la mayoría de los programas de 3D como 3DSMAX o AutoCAD y además del dibujo técnico y Arquitectónico se utiliza principalmente en la creación de videojuegos.

La base de este sistema se establece mediante la línea del horizonte y las rectas proyectantes que convergen hacia uno, dos o tres puntos de fuga según sea el punto de vista del observador.

Para entender la perspectiva cónica debemos conocer los siguientes conceptos:

Punto(s) de fuga, el cual es un punto al cual convergen las rectas proyectadas. Dependiendo del punto de vista pueden ser 1, 2 o 3 puntos.

– Punto de vista del observador desde el cual se observa la escena.

– La «línea del horizonte» que representa la altura del horizonte (teóricamente es la división entre cielo y tierra) y de los ojos del observador mediante una línea horizontal. Dependiendo de la altura de esta el objeto estará visto desde arriba, constante (o frontal) o desde abajo.

Esto se puede resumir en el siguiente esquema:

Las prespectivas cónicas son de 3 tipos:

Perspectiva frontal o paralela: en esta perspectiva los objetos se sitúan con sus caras paralelas al plano del cuadro. Existe un único punto de fuga en la línea del horizonte que coincide con el punto principal.

Perspectiva oblicua o angular: en esta perspectiva el plano del cuadro se sitúa de forma oblicua respecto a las dos direcciones fundamentales, permaneciendo la tercera dirección vertical. En esta situación se originan dos puntos de fuga en la línea del horizonte.

Perspectiva aérea: en esta perspectiva el plano del cuadro se sitúa de forma oblicua respecto a las tres direcciones fundamentales. En esta perspectiva se originan tres puntos de fuga: dos en la línea del horizonte y un tercero en una vertical accesoria.

Ejemplos de uso de esta perspectiva:

Proyecto de edificio dibujado a mano mediante perspectiva cónica.

Palacio de la Asamblea en Chandigarh, obra de Le corcubiser, dibujado a mano mediante perspectiva cónica.

Doom (para PC), videojuego realizado utilizando la perspectiva cónica.

Halo 5, otro videojuego realizado utilizando la perspectiva cónica.

Perspectiva Isométrica

Es una forma de proyección gráfica o, más específicamente, una axonométrica (proyección medida mediante ejes X, Y y Z) cilíndrica ortogonal. Es una representación de un objeto tridimensional en dos dimensiones en la que los tres ejes de referencia tienen ángulos de 120º, y las dimensiones guardan la misma escala sobre cada uno de ellos. Por ende los 3 ejes X, Y y Z tiene la misma magnitud y escala.

La isometría es una de las formas de proyección más utilizadas en dibujo técnico ya que tiene la ventaja de permitir la representación a escala en sus tres dimensiones, pero que tiene la desventaja de no reflejar la percepción «real» del ojo humano. Sin embargo gracias a su versatilidad se utiliza para definir dibujos de Arquitectura o por ejemplo, en la creación de videojuegos.

Trazado de perspectiva isométrica:

El procedimiento tradicional de trazado consiste en dibujar el prisma que envuelve la pieza u objeto e ir eliminando material de la misma hasta obtener el objeto deseado, utilizando las medidas de las vistas y reproduciéndolas en cada eje. El prisma se dibuja usando ángulos de 30° para formar la base, y paralelas para definir la forma.

Usando la regla y el cartabón 30°-60° dibujamos la vertical:

Luego usando el ángulo de 30° del cartabón trazamos el segundo eje:

Invertimos el cartabón y tomando el punto de intersección de las rectas trazamos el eje final usando el mismo ángulo de 30°:

Trazamos las líneas paralelas respectivas para construir el prisma y definir la vista isométrica.

Nota: en el caso de la perspectiva isométrica, todas las caras “rectas” de una forma siempre se dibujarán paralelas a los ejes respectivos en los cuales se proyecta.

Si bien en la perspectiva isométrica podremos dbujar sus caras en verdadera magnitud y escala, tendremos un problema al representar los círculos ya que debido al ángulo de las caras no podemos representarlas en verdadera magnitud y forma sino que estos se verán como elipses, y por ello deben dibujarse mediante el método de Stevens o del paralelógramo.

Trazado de círculos usando el método de Stevens:

1) En la isométrica dada, ubicamos los puntos medios de la cara los cuales son: a, b, c y d.

2) Dibujamos las líneas que unen aquellos puntos.

3) En los ángulos mayores de la cara y partiendo de los puntos marcados en rojo, conectamos con el punto medio opuesto.

4) A partir de los mismos puntos conectamos el otro punto medio opuesto.

5) Los puntos marcados en rojo definirán los radios de los arcos desde “a hacia “b” y de “c” a “d”, ya definidos en celeste.

6) Tomando el punto marcado en rojo, trazamos el primer arco mayor desde “a” hacia “b”.

7) Tomando el siguiente punto trazamos el segundo arco desde “d” hacia “c” para terminar la representación.

8) Podemos repetir el método en las otras vistas para obtener todas las representaciones de círculos.

Ejemplos de uso de esta perspectiva:

Edificio dibujado en vista isométrica.

Zigurat Or-Nammu dibujado en vista isométrica.

Proyecto restauración de Palacio Pereira, corte dibujado en vista isométrica.

Wasteland 2, videojuego con vista isométrica.

Shadow Run Returns, otro videojuego con vista isométrica.

Perspectiva militar

Es una proyección axonométrica oblicua, un sistema de representación por medio de tres ejes cartesianos (X, Y, Z). En el dibujo, el eje Z es el vertical, mientras que los otros dos (X, Y) forman 90° entre sí, determinando el plano horizontal (suelo). Normalmente, el eje X se encuentra a 120° del eje Z, mientras que eje Y se encuentra a 150° de dicho eje. En el eje Z se suele reducir en una proporción de 1/2 o de 3/4.

La principal ventaja de esta perspectiva radica en que las distancias en el plano horizontal XY conservan sus dimensiones y proporciones. Las circunferencias en el plano horizontal se pueden trazar con compás sin ningún problema, pues no presentan deformación. Sin embargo, las circunferencias en los planos verticales se representan como elipses.

Trazado de perspectiva militar:

Mediante regla y cartabón de 30°-60° dibujamos la vertical:

Luego usando el ángulo de 30° del cartabón trazamos el segundo eje:

Invertimos el cartabón y tomando el punto de intersección de las rectas trazamos el eje final usando el ángulo de 60°:

Trazamos las líneas paralelas respectivas para construir el prisma y definir la vista militar.

Alternativa de trazado B:

mediante regla y escuadra de 45° dibujamos la vertical:

Luego usando el ángulo de 45° de la escuadra trazamos el segundo eje:

Invertimos la escuadra y tomando el punto de intersección de las rectas trazamos el eje final usando el mismo ángulo de 45°:

Trazamos las líneas paralelas respectivas para construir el prisma y definir la vista militar.

Ejemplos de uso de esta perspectiva:

 

Proyecto de edificio dibujado mediante perspectiva militar.

Prefabricated Buildings, proyecto dibujado mediante perspectiva militar (imagen tomada de https://proyectos4etsa.wordpress.com).

Ville La Roche de Lecorbusier, dibujada en perspectiva militar.

Un espacio interno visto en perspectiva militar.

Ville Savoie dibujada en perspectiva militar.

Perspectiva caballera

Es un sistema de representación axonométrica que utiliza la proyección paralela oblicua, en el que las dimensiones del plano proyectante frontal, como las de los elementos paralelos a él, están en verdadera magnitud. En perspectiva caballera, dos dimensiones del volumen a representar se proyectan en verdadera magnitud (el alto y el ancho) y la tercera (la profundidad) con un coeficiente de reducción. Las dos dimensiones sin distorsión angular con sus longitudes a escala son la anchura y altura (plano XZ) mientras que la dimensión que refleja la profundidad (Y) se reduce en una proporción determinada. 1:2, 2:3 o 3:4 suelen ser los coeficientes de reducción más habituales.

Se puede dibujar fácilmente un volumen a partir de una vista lateral o alzado, trazando a partir de cada vértice líneas paralelas al eje Y, para reflejar la profundidad del volumen.

Este tipo de proyección es frecuentemente utilizada por su facilidad de ejecución, aunque el resultado final no da una imagen tan real como la que se obtendría con una proyección cónica. También en algunos casos puntuales, esta perspectiva es utilizada para el diseño de videojuegos.

Trazado de perspectiva caballera:

Mediante regla y escuadra de 45° dibujamos la vertical:

Luego trazamos la perpendicular mediante una línea horizontal:

Invertimos la escuadra y tomando el punto de intersección de las rectas trazamos el eje final. en este caso el ángulo es variable:

Trazamos las líneas paralelas respectivas para construir el prisma y definir la vista caballera.

Ejemplos de uso de esta perspectiva:

Grabado del arquitecto Jacques Androuet Du Cerceau desarrollado en perspectiva caballera donde apreciamos la planta del palacio de las tullerías en la misma perspectiva.

Conjunto de edificios dibujados usando perspectiva caballera.

Grabado antiguo de edificio dibujado mediante perspectiva caballera.

Prince of Persia, 1999. Ejemplo de videojuego utilizando perspectiva caballera. Nótese que las plataformas donde corre el protagonista no tienen reducción, es decir, ambas medidas son iguales pero la percepción es que son más largas.

Prince of Persia classic. Ejemplo de videojuego utilizando perspectiva caballera.

Sunset Riders. Otro excelente ejemplo de videojuego utilizando perspectiva caballera.

Bibliografía utilizada:

Instituto Nacional de Normalización, http://www.inn.cl
– Norma Chilena de Dibujo Técnico NCh2268.
– International Organization for Standarization, ISO: http://www.iso.org
Web http://www.dibujotecnico.com