AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o “User Coordinate System” ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en 3D de la imagen izquierda aplicando algunas de las funciones de este comando y también utilizando otras funciones del programa, como por ejemplo el comando presspull. Antes de iniciar este tutorial, se recomienda revisar y leer el Tutorial 12 sobre UCS.

Aplicando UCS o User Coordinate System

Como ya sabemos, UCS (o SCP en español) es un sistema personalizado de coordenadas que consiste básicamente en alterar o modificar la posición original del sistema de ejes coordenados X, Y y Z usando principalmente el plano XY. Para ejemplificar y aplicar algunas funciones de este comando modelaremos la estructura de la siguiente foto:

Como se puede apreciar, el modelo 3D a realizar es un paradero hipotético pero utilizando medidas reales, el cual será realizado usando los siguientes comandos de 3D: UCS, Box, Presspull, Boolean, Filletedge, offsetedge y Polysolid.

Modelando el piso y definiendo la estructura

Para comenzar, modelaremos la base del paradero y para ello dibujamos una box (caja) la cual tendrá las siguientes medidas: 300 x 600 x 30. Antes de comenzar, usaremos modo ortho (F8) para ortogonalizar la caja antes de proceder a su modelado.

Una vez terminada la caja, usaremos sus extremos como puntos de base para modelarle encima un grupo de muros y para ello usaremos el comando polysolid. Como ya sabemos gracias al tutorial 08, configuramos previamente el polysolid con los siguientes parámetros:

Width: 10.
Height: 320.
Justify: left.

Tip: también podremos hacerlo mediante box, aunque esta opción es más compleja.

Una vez construida nuestra base, procederemos al modelado mismo: a diferencia de otras técnicas de modelado, esta vez iremos dando forma a la estructura mediante la sustracción de masa o de materia al polysolid original y para ello nos valdremos del comando UCS. La idea es que en las 4 caras dibujemos mediante líneas 2D todas las distancias y la forma del paradero para después ir quitando la materia necesaria. Las medidas base que tomaremos para esto serán las dadas en las imágenes siguientes (click para agrandar):

Medidas base en SE Isometric (isométrica por defecto).

Medidas base en NW Isometric (las caras opuestas).

Para dibujar las líneas de la primera cara (cara mayor), lo primero que haremos será crear un layer para las líneas y luego definirle un grosor alto pues esto hará que las podamos visualizar de forma más sencilla en el proyecto. Una vez hecho esto, dejamos el layer activo o current y ahora ejecutamos el comando UCS (enter). Elegimos la opción Y, y cuando el programa nos pregunte respecto al valor del ángulo, colocaremos 90 y luego presionamos enter.

Como se puede apreciar, UCS ha rotado el plano en 90° en torno al eje Y y con ello ha quedado paralelo a la cara mayor. También notaremos que la rotación se ha efectuado “hacia abajo” o mejor dicho contrarreloj, de forma similar a cuando dibujamos arcos. Como necesitamos dibujar las líneas encima de nuestra cara, nos vamos a la persiana Visualize >> Coordinates y una vez allí elegiremos el icono Origin UCS:

Luego de seleccionado, estableceremos el punto de origen en el extremo inferior izquierdo (endpoint) de la cara mayor de la base:

Una vez colocado el punto de origen, notamos que este se ha colocado en la posición indicada y por ende, los dibujos 2D que realicemos tendrán esta referencia como base. Ahora dibujamos una línea la cual irá desde el extremo superior de la caja hacia el otro, tal como lo indica la imagen de abajo. Una vez hecho esto, simplemente ejecutaremos a la línea resultante un offset a 250, que será la altura inicial de nuestro paradero.

Notaremos que al hacer el offset este nos permitirá colocar la línea resultante tanto abajo como arriba de la estructura ya que, al estar el plano en concordancia con la cara mayor, podremos ocupar cualquier comando de 2D sin mayor problema. Obviamente elegiremos la opción de arriba y presionamos click para finalizar el offset.

Ahora realizamos otro offset tomando la línea resultante, pero esta vez le asignamos el valor 30 y elegiremos la dirección de arriba. Con esto definimos las alturas del paradero en su cara mayor visible.

El paso siguiente es dibujar una línea vertical que irá desde un extremo de la box hasta la altura final del polysolid. Esta línea nos servirá como base para dibujar la estructura de pilares de la fachada.

Tomando esta línea como base, realizamos un offset con el valor 10 para formar el primer pilar de la estructura, en este caso la dirección del offset será hacia la izquierda, tal como se aprecia en la imagen de abajo:

Ahora definiremos el resto de los pilares, y podremos tanto ocupar offset junto a las medidas base como realizando una copia mediante copy >> array >> 3 >> fit. Si realizamos offset tomando la primera línea dibujada, debemos tomar siempre cada resultante la siguiente vez que lo apliquemos. Si se realiza mediante esta técnica (partiendo desde la primera línea vertical dibujada), los valores de offset serán: 10, 285, 10, 285, 10.

El resultado debe ser el de la imagen de abajo, aunque se recomienda hacerlo mediante la funciones Array y Fit del comando Copy, tomando como base el punto extremo de la línea resultante al ejecutar el primer offset.

Ahora ejecutamos UCS (enter) y presionamos nuevamente enter para volver al UCS por defecto (World). Con esto podemos ver las líneas de la primera cara ya definidas.

El paso siguiente es dibujar en la cara menor o izquierda. El proceso a repetir es el mismo que en el caso anterior, aunque esta vez al ejecutar UCS elegiremos la opción X, y damos como ángulo el valor de 90.

Como notamos, esta vez es el eje X es el que se rota y queda paralelo a la cara menor. Nuevamente nos vamos a la persiana Visualize >> Coordinates y una vez allí volveremos a elegir el icono Origin UCS:

En este caso, una vez seleccionado estableceremos el punto de origen en el extremo inferior izquierdo de la base. Como ya tenemos las líneas horizontales definidas en la cara mayor, en este caso bastará con proyectarlas a la cara menor dibujando nuevas líneas, las cuales se definen desde el extremo derecho hasta la perpendicular de la cara menor, tal como se ve en la imagen de abajo. Repetimos el proceso con las dos líneas horizontales restantes.

Ahora ejecutaremos un offset con el valor 10 y seleccionamos la línea vertical del lado derecho de la cara menor, tal como se ve en la imagen de abajo:

Volvemos a ejecutar un offset, le asignamos el valor 175 y seleccionamos la línea resultante, tal como se ve en la imagen de abajo. Con esto ya definimos la base de la segunda cara.

Ahora sólo nos queda realizar dos acciones: la primera será acortar la línea (tomándola desde el extremo azul) de tal modo que quede de forma perpendicular a la segunda línea horizontal, como se aprecia en la imagen de abajo:

Finalmente dibujamos la diagonal que será la inclinación del techo, la cual parte desde el extremo izquierdo de la línea horizontal más alta hasta la altura final de la primera línea vertical dibujada.

Ejecutamos UCS (Enter) y nuevamente enter (o elegimos W) para volver al UCS por defecto. Con esto ya tenemos gran parte de la tarea hecha, aunque nos faltará definir el resto de las caras.

Para definir las caras restantes puede repetirse el proceso en las caras siguientes, aunque en este caso será mucho más sencillo si aplicamos el comando mirror, ya que al tener caras simétricas con este podremos replicar todas las líneas en las caras opuestas seleccionando como espejo el punto medio de lada cada cara. Volviendo a la cara menor, elegimos todas las líneas, ejecutamos mirror y cuando el programa nos pregunte por el eje del espejo (mirror axis), elegimos el punto medio de la cara mayor de la base del paradero (debemos activar F8 para que la copia se realice de forma correcta).

El resultado de la copia puede verse al girar la vista isométrica hacia la otra cara:

Repetimos el proceso eligiendo las líneas en la cara mayor y ejecutando mirror, pero esta vez tomamos como mirror axis el punto medio de la cara menor de la base.

El resultado de la copia puede verse al girar la vista isométrica hacia la otra cara:

Con estas operaciones ya está casi todo listo aunque debemos dibujar las líneas faltantes en la cara mayor opuesta. Para esto, giramos la vista isométrica hacia esa cara y una vez alli debemos nuevamente ejecutar UCS, luego elegimos Y y como valor de ángulo colocamos 90, para así girar el plano de forma paralela a esta cara.

Nos vamos a la persiana Visualize >> Coordinates y una vez allí volvemos a elegir el icono Origin UCS:

En este caso establecemos el punto de origen en el extremo inferior derecho de la cara. Ahora realizamos los offsets necesarios que partirán desde la segunda línea horizontal de la altura, y serán de 60, 80 y 60 respectivamente (se deben tomar siempre las resultantes al realizar cada offset).

Primer offset de 60 realizado, tomando como inicio la segunda línea horizontal.

Segundo offset de 80 realizado, tomando como inicio resultante de la segunda línea horizontal.

Offset final de 60 realizado, tomando como inicio la resultante del offset anterior.

Con la realización de estos pasos mediante el comando UCS ya hemos definido todas las medidas base del proyecto, y por ello ya estamos listos para iniciar el modelado completo de la estructura.

Modelado de la estructura

Una vez definidas las medidas y las distancias en las caras de los muros, procederemos con el modelado. Para ello usaremos una propiedad muy interesante del comando Presspull ya que si lo ejecutamos en las áreas definidas por las líneas y luego extruimos hacia atrás, realizaremos la resta de sólidos de forma automática y por ello sin necesidad de ocupar el comando Subtract. Antes de realizar esto es importante advertir que es mejor desactivar F3 (OSNAP), ya que la sustracción afectará a todos los sólidos que se abarquen en la extrusión, y F3 puede hacer que extruyamos los sólidos de forma incorrecta o tome más elementos de los que queremos sustraer.

Volviendo al ejercicio, comenzaremos con la cara mayor que primeramente realizamos, ejecutamos presspull y seleccionamos el área mayor del lado izquierdo para finalmente extruir hacia atrás hasta la mitad más o menos de la estructura. El resultado es el de la segunda imagen.

Procedemos a realizar lo mismo con la segunda área grande y las cadenas superiores de los muros. El resultado de las operaciones es el que se muestra abajo:

Ahora tomamos el área grande derecha de la cara menor y extruimos hacia atrás de tal forma que atravesemos toda la estructura de forma longitudinal, tal como se ve en la imagen de abajo:

El resultado de la operación es el de la imagen siguiente, y con esto ya hemos definido el frente y los laterales de la estructura base. Se podrían seguir extruyendo los triángulos superiores pero esto no es recomendable, ya que es mejor hacerlo una vez que se hayan extruido las formas desde el otro lado.

Ahora repetiremos el proceso pero desde la otra cara mayor. En este caso iremos restando todas las formas de tal modo que quede lo mismo que en la primera cara. Si bien esto se pudo haber hecho en un principio extruyendo todo de forma transversal a la estructura, es mejor hacer este proceso para ir practicando la sustracción mediante presspull.

Una vez hecho esto, procedemos a extruir la zona superior mediante el mismo proceso. Es importante mencionar que las líneas dibujadas deben mantenerse, pues nos servirán para dibujar el resto del paradero (anuncios y sillas).

El resultado de lo modelado hasta ahora es lo siguiente:

Ahora podremos extruir el triángulo superior para formar el techo ya que al hacerlo, toda la estructura será afectada por la sustracción y por ello esta quedará lista para recibir la cubierta. Ejecutamos presspull, seleccionamos el triángulo y proyectamos la extrusión hacia toda la estructura del paradero:

El resultado es el de la imagen de abajo. Notaremos que nos quedará un recorte recto que debemos arreglar en el siguiente paso.

Ampliamos el modelo y nos vamos a la punta superior donde notaremos un triángulo pequeño en la cara superior. Repetimos el mismo proceso y seleccionando este, ampliamos la extrusión a toda la estructura, tal como se aprecia en la segunda imagen.

Este es el resultado de lo modelado hasta ahora. La estructura base ya está modelada y ya sólo nos quedan algunos elementos menores. Para modelar los anuncios y los asientos, podemos ocupar el comando UCS >> Y >> 90 y colocamos el punto de origen mediante visualize, pero esta vez lo haremos mediante el UCS por defecto. Invocamos UCS (enter) y cuando el programa nos pida el punto de origen seleccionamos el que indica la imagen (extremo inferior izquierdo de la base):

Ahora colocamos el segundo punto (dirección de X) en el extremo indicado en la imagen siguiente (extremo inferior derecho de la base):

Finalmente colocamos el tercer punto (dirección de Y) en el final de la línea de acuerdo a la imagen siguiente (extremo superior):

Con esto ya definimos el plano XY que concordará con la cara mayor opuesta y podremos proseguir con el modelado. El resultado debe ser el de la imagen de abajo:

Procedemos ahora a modelar los anuncios. En este caso será bastante fácil pues nos bastará tomar las esquinas indicadas por las líneas de la parte superior y definimos la altura hacia la derecha. Cuando el programa nos pregunte por esta, le asignamos el valor 5.

Repetimos el proceso con el otro lado y con esto formamos los bloques de anuncios del paradero. Si lo queremos, podemos elegir el estilo visual X-Ray y cuando se nos pregunte por la altura, en lugar de colocar el valor 5 elegimos el punto medio del pilar, tal como se ve en la imagen de abajo:

De igual forma modelaremos los respaldos de los asientos pero en este caso, asignaremos el valor 10 al extruir o podemos tomar un punto extremo inferior del pilar central como referencia.

Repetiremos el proceso con el otro lado y ya tenemos los respaldos modelados, aunque todavía faltará modelar los asientos y el resto del paradero.

Para modelar los asientos voltearemos el modelo de tal forma de cambiar la vista original a la isométrica opuesta (la idea es que la cara mayor inicial sea la visible) y SIN cambiar el UCS, desactivamos F8 (si lo tenemos activado), elegiremos el estilo visual X-RAY y dibujaremos una box de la siguiente manera: cuando iniciemos el comando Box colocamos el primer punto en el extremo inferior izquierdo del primer respaldo modelado:

Ahora cambiamos a la opción Length de Box y una vez hecho esto, en lugar de escribir un valor para el largo seleccionamos el otro extremo del respaldo del asiento, tal como lo indica la imagen de abajo. Como se puede apreciar, la opción Length de Box también trabaja indicando puntos en lugar de valores para cualquiera de las medidas.

Una vez definido el largo, procedemos a definir el “ancho” (Width) y moviendo el cursor hacia arriba le damos el valor 5, tal como indica la imagen:

Finalmente definimos la “altura” (Height) moviendo el cursor hacia la derecha y esta vez le asignamos el valor de 40, y con esto definimos el asiento propiamente tal.

Con esto definimos el asiento completo y para terminar el modelado de ambos, copiamos el box recién creado al otro lado usando F8 para guiarnos o ayudándonos mediante relaciones entre objetos (OSNAP) como Endpoint.

Una vez definidos los asientos, uniremos cada uno de estos mediante el comando Union. Ahora lo que necesitaremos realizar es la inclinación del respaldo de estos ya que no son rectos. En este caso realizaremos el UCS por defecto donde el primer punto a seleccionar será el primer punto final del interior del asiento y el segundo será el del otro extremo (puntos amarillos), el punto final será el punto medio de la altura del grosor del respaldo, tal como se ve en la imagen de abajo.

Con esto definimos el grado de inclinación de los respaldos y lo que debemos hacer ahora será lo más sencillo, ya que le modelaremos una Box de tal manera que esta parta desde el origen del UCS y abarque todo el volumen del respaldo, ya que lo sustraeremos para formar la inclinación (el box puede ser mayor incluso). Si queremos hacer más sencillo el proceso, podremos incovar el comando Isolate (ISOL), seleccionar el asiento y presionar enter ya que con esto, sólo este se nos mostrará en pantalla y podremos realizar la operación sin obstrucciones visuales.

Mostrando sólo el asiento usando el comando Isolate Objects o ISOL. Podremos volver a mostrar todo el modelo si invocamos el comando Unisolate (UNISO).

Ahora dibujamos la box antes mencionada en el respaldo del asiento y luego se la sustraemos a este mediante el comando Subtract, para finalizar el modelado base de este.

Como notamos, el asiento base ya está listo y sólo nos faltan los ajustes finales. Para ello redondearemos mediante el comando Fillet Edge sus tres lados visibles: el lado interno y los extremos superior e inferior. Invocamos el comando y nos vamos a Radius, donde asignaremos el valor 2.5 para todos los redondeos. Seleccionamos los lados y luego ejecutamos dos veces enter para finalizar.

Definiendo los redondeos del asiento mediante Fillet Edge. También se puede utilizar fillet normal de 2D.

Repetiremos todos los procesos en el figuiente asiento y con ello tendremos los dos asientos finalizados. Si estamos en el modo Isolate Objects, invocaremos el comando UNISO para volver al modelo completo. Colocamos el UCS por defecto (World) para ver el resultado de lo modelado hasta ahora:

El siguiente paso es modelar las rampas. Para esto, simplemente ejecutamos presspull en el área inferior de esta y extruimos con el valor 100:

Repetimos el proceso pero esta vez seleccionamos el área del pilar, aunque en este caso podemos hacer referencia en el punto final en lugar de escribir el valor 100. Con esto definimos la base de la rampa.

Para realizar la inclinación modelaremos de forma similar a como lo hicimos con los respaldos de los asientos, ya que primeramente efectuaremos UCS de 3 puntos y tomaremos los dos extremos inferiores como origen y dirección de X respectivamente, mientras que el tercer punto (dirección de Y) será la intersección entre la altura de la rampa y la intersección con el pilar, de acuerdo a la imagen de abajo:

Con esto obtenemos la inclinación de la rampa y podremos modelar la box para luego sustraérsela a la estructura. Eso sí, en este caso la caja deberá partir desde el tercer punto del UCS para evitar cortar la estructura o parte de esta indebidamente.

Volvemos al UCS por defecto (World), repetimos el mismo proceso con el otro lado del paradero y con esto ya tenemos la estructura casi terminada.

Para terminar la estructura como tal sólo nos faltará modelar el envigado central de la techumbre. Para ello, nos vamos al extremo izquierdo y copiamos las tres líneas del triángulo superior mediante el comando copy.

Ajustamos la línea mayor (que originalmente es de la cara mayor) de modo que nos permita formar el triángulo superior y luego unimos todas las líneas mediante join, para finalmente aplicarle presspull y asignar el valor 10 (enter) para así terminar la cuña.

Ahora giramos el modelo hacia la vista bottom de tal modo que la base de la cuña recién creada quede visible. Una vez hecho esto, le aplicamos presspull a esta y asignamos el valor 30. Con esto obtenemos la pieza que falta para el envigado.

Volvemos la vista isométrica normal y movemos el objeto 3D recién creado hacia el medio de la estructura, tomando como punto base el primer punto del extremo superior del objeto y moviéndolo hacia el primer punto del pilar superior.

Finalmente fusionamos el objeto con la estrucura mediante Union, y con esto completamos el modelado de esta.

Ya sólo nos falta modelar los anuncios laterales y la techumbre para terminar nuestro modelo.

Modelando los anuncios laterales, techumbre y finalizando el tutorial

Para modelar los anuncios laterales esta vez usaremos la función DUCS o F6 (imagen siguiente), ya que con esta función será fácil definir el punto de origen del plano XY para posteriormente definirlos mediante box:

Invocamos el comando Box, presionamos F6 y seleccionamos como origen el punto inferior que está entre la base y la pared de la estructura, asegurándonos que esta última quede marcada en azul o mediante segmentación si elegimos el estilo visual 2D Wireframe.

Con esto podremos dibujar la Box en torno a la pared y así definir el anuncio. Activaremos el modo ortho (F8), luego nos vamos a la opción Length de Box y dibujamos la primera longitud la cual será de 100 hacia arriba, como se indica en la imagen:

La siguiente magnitud será de 60 hacia el lado izquierdo, y finalmente la altura se definirá con el valor de 2 hacia dentro del paradero:

Con esto ya tendremos definido el anuncio y ahora sólo nos resta moverlo hacia su posición final.

Moverlo será relativamente fácil ya que nos bastará seleccionarlo o ejecutar 3DMove. En el primer caso, seleccionamos el anuncio y luego elegimos el eje Z mediante click, para finalmente asignar el valor 80 y presionar enter.

Repetimos el proceso pero esta vez tomamos el eje X, movemos el objeto hacia la izquierda y asignamos el valor 20 para finalmente presionar enter.

Repetimos el proceso en el otro lado y con ello tendremos definidos los dos anuncios del paradero, y ya sólo nos falta definir el techo para terminar el modelado.

Desactivamos F6 y luego cambiamos la vista para tener visible la cara mayor donde están los asientos de modo que tengamos la visión del techo. Ahora realizaremos un UCS de 3 puntos, de tal modo que el primer punto será el extremo inferior derecho del techo, el segundo será el otro extremo y el tercero será el extremo superior izquierdo del techo, tal como se aprecia en las imágenes siguientes:

Una vez definido el UCS, dibujamos una Box desde un extremo a otro para definir el techo del paradero, estableciendo el valor 5 para la altura de este:

Para terminar el modelado sólo nos queda definir el “alero” del techo en las cuatro esquinas de este. Si queremos, podemos volver al UCS por defecto ya que al definir el alero no afectará la posición del techo. Lo podemos hacer modificando la box del techo mediante dos métodos distintos:

1) Usando presspull, tomando la cara en cuestión, definir el valor y presionar enter. En este caso asignamos el valor 20 para todas las caras.

Nota: si realizamos el alero mediante esta opción, el segundo método no estará disponible y por tanto, debemos realizar todo el proceso mediante presspull.

2) Seleccionar la box recién creada, tomar las flechas azules de los puntos medios de la box, moverlas para así modificar la forma y en esta etapa asignar el valor de 20, para finalmente presionar enter. Este es sin duda el método más sencillo y por supuesto el más recomendado.

Repetiremos cualquiera de estos dos métodos en todas las caras del techo (se debe girar el modelo para poder seleccionar las caras o flechas no visibles) y así obtenemos la techumbre completa. Este es el resultado de todo lo modelado hasta el momento:

Asignamos todos los elementos 3D modelados al layer 0 y finalmente ocultamos el layer en el que están las líneas de referencia. Este es el resultado final, donde vemos toda la estructura ya modelada:

Para finalizar el modelado detallaremos un poco más los anuncios laterales ya que le agregaremos el marco y definiremos el volumen donde irá la imagen interior de este. Para esto, invocamos el comando offset edge y luego seleccionamos la cara principal del anuncio:

Una vez realizado esto, nos vamos a la opción distance y le asignamos el valor 5, para finalmente elegir el interior de la cara cuando se nos indique la distancia del offset (Specify distance).

Notamos que se dibujan las líneas respectivas y ahora ejectamos presspull, seleccionamos el interior y cuando se marque el área, extruimos hacia adentro del marco interior, asignamos el valor 1 y luego presionamos enter.

Con esto definimos el espacio donde irá la imagen del anuncio. Borramos las líneas del offset y ahora activamos DUCS (F6) para asignar el plano del marco (imagen de abajo) y dibujar una box irá desde un extremo al otro del espacio, y su altura será el valor 1 la cual irá hacia dentro de este. Esta box será el volumen donde se mostrará la imagen del anuncio.

Con esto ya tenemos terminado todo nuestro paradero, y el resultado final de las operaciones realizadas es el siguiente:

Con el modelado del paradero ya finalizado podemos crear más layers y asignarle materiales a los elementos de este, así como también colocar imágenes como texturas para los anuncios y luego aplicarle iluminación a la escena, para finalmente realizar un render.

Este es el resultado final del render:

 

Y este es el cuadro de materiales aplicados en el render mostrado arriba:

Este es el fin de este Tutorial.

AutoCAD 3D Tutorial 08b: Extrude, Sweep y Revolve

En este nuevo tutorial de AutoCAD 3D analizaremos los comandos base del programa que nos permitirán convertir elementos 2D en sólidos 3D. Esto es muy importante porque una de las bases fundamentales del modelado tridimensional es que por definición, los elementos tridimensionales que conforman un proyecto o construcción están directamente relacionados con las planimetrías 2D de estos y por ello, podemos obtener sólidos a partir de la modificación tridimensional de estas mismas.

Estos comandos base son los siguientes:

– Extrude.
– Revolve.
– Sweep.
– Loft.

Sin embargo, ya hemos analizado en profundidad el comando Loft en su propio tutorial, por lo tanto este nuevo artículo se enfocará en los restantes comandos base: Extrude, Revolve y Sweep.

El comando Extrude

Extrude es el rey de los comandos de conversión en AutoCAD 3D ya que es, por lejos, el más utilizado a la hora de poder convertir un dibujo 2D en un sólido 3D. Lo que realiza Extrude es proyectar una forma abierta o cerrada en forma bi o tridimensional según sea el caso. Por esto mismo es que el comando puede trabajar mediante formas abiertas o cerradas:

Ejemplo de formas extruidas: la primera es un prisma obtenido a partir de un polígono regular cerrado (hexágono) mientras que la segunda es una spline abierta.

Sin embargo, si tomamos una forma cerrada debemos asegurarnos que esté unificada (mediante Join) para que la extrusión sea una forma sólida o de lo contrario nos proyectará planos bidimensionales:

El mismo ejemplo anterior pero en el primer caso las líneas del polígino están unificadas, mientras que en el segundo estas están explotadas y forman superficies planas.

Como sabemos, para ejecutar extrude debemos invocarlo mediante EXTRUDE o pinchando el icono correspondiente:

Si invocamos el comando y no hacemos nada, podremos elegir el modo (MOde) o tipo de resultado a obtener:

El resultado puede ser una superficie (SUrface) o un sólido (SOlid), de forma similar a Loft. El resultado del modo SU influirá en todas las líneas que estén unificadas.

Esto es particularmente útil en caso que tengamos una forma cerrada unificada pero queramos un resultado plano:

En este ejemplo tenemos la primera forma extruida mediante el modo por defecto o solid (SO), mientras que en el segundo se ha cambiado el modo a superficie (SU). En ambos casos las líneas están unificadas.

Para ejecutar el comando Extrude de forma correcta debemos hacerlo de la siguiente manera:

– Invocar al comando escribiendo EXTRUDE y luego presionar enter, o presionando el icono correspondiente.

– Una vez que invocamos el comando, el programa nos permitirá elegir el o los objetos a extruir y luego de hacerlo, presionamos enter para ahora definir la altura de la extrusión. Esta se puede definir de forma numérica mediante un valor de “altura” o mediante click con el mouse en el área de trabajo:

En este ejemplo se ha escrito el valor 250 como altura y luego se ha presionado enter para finalizar la extrusión. En la imagen derecha se aprecia el resultado de la operación.

– Presionamos enter para finalizar el comando.

Si ejecutamos Extrude, elegimos los objetos y luego presionamos enter, encontraremos varias opciones extras:

Estas opciones son:

Path: permite seleccionar una forma la cual será un recorrido de referencia para la extrusión, no importa si esta toca a la forma o no ya que lo importante es que siempre debe tener una altura respecto de la superficie a extruir. Puede ser recta o curva, pero en este último caso debe evitarse la curvatura excesiva o el comando no funcionará. Para ejecutarlo haremos click en Path o escribimos P y presionamos enter, luego elegimos el recorrido para completar la extrusión.

Extrusión aplicada mediante la opción Path, donde el recorrido base es una recta inclinada en forma paralela al plano YZ.

Extrusión aplicada mediante la opción Path, donde el recorrido base es una curva paralela al plano YZ.

Direction: permite tomar puntos en el área de trabajo para concretar la extrusión. Se pueden indicar mediante la introducción de coordenadas X,Y,Z o mediante clicks con el mouse en el área de trabajo. En este caso activamos la opción clickeando en Direction, luego introducimos las coordenadas del primer punto o Start Point (X,Y,Z) para terminar introduciendo las coordenadas del punto final o Second Point (X,Y,Z). Esto último también lo podemos definir mediante clicks con el mouse.

En este ejemplo se ha elegido la opción Direction. En Start Point se ha definido el punto 0,0,0 y en Second Point el punto 0,0,200. El resultado es una extrusión de 200 de altura.

El mismo ejemplo anterior pero esta vez el segundo punto (Second Point) es 50,50,200. En este caso la extrusión es de 200 de altura pero está inclinada 50 respecto a X e Y.

Taper angle: permite deformar la altura de la extrusión ya que el valor por defecto es 0°, es decir, la extrusión será por defecto perpendicular al plano XY o a la superficie que forme el objeto a extruir. Si el valor del ángulo es positivo, la deformación será hacia dentro de la superficie, y si es negativo será hacia afuera. Al estar la deformación hacia adentro hay que tener en cuenta que existirá una altura máxima ya que debido al taper se terminará en punta o en canto dependiendo de la forma y del ángulo aplicado. Para ejecutarlo bastará elegir la opción Taper angle y luego establecer el valor mediante número, para luego presionar enter y determinar la altura para terminar la extrusión.

En este ejemplo tenemos aplicado el subcomando Taper angle de forma positiva y en el primer prisma Taper está en ángulo 0º (por defecto), en el segundo Taper está en 10º y en el tercero Taper está en 30º.

En este ejemplo tenemos aplicado el subcomando Taper angle de forma negativa y en el primer prisma Taper está en ángulo 0º (por defecto), en el segundo Taper está en -10º y en el tercero Taper está en -30º.

Expression: nos da la posibilidad de ingresar o restringir el valor de la altura mediante una expresión matemática.

El comando Sweep

El comando Sweep nos permite proyectar una forma cerrada en un recorrido u objeto sea lineal o curvo, y este último puede ser abierto o cerrado. En el caso de la forma cerrada esta debe estar siempre unificada ya que de otra manera, el comando no funcionará. Para el caso del recorrido es algo similar pero si la forma no está cerrada, Sweep sólo tomará en cuenta el primer recorrido seleccionado.

Ejemplo de aplicación del comando Sweep en una forma cerrada unificada, una forma lineal y una curva.

El ejemplo anterior pero en este caso la forma cerrada ha sido explotada, y se ha tomado la línea superior.

Para ejecutar el comando realizaremos los siguientes pasos:

– Invocamos el comando escribiendo SWEEP luego y presionando enter o presionando el icono respectivo.
– Elegimos la forma cerrada a proyectar y luego presionamos enter.
– Elegimos el recorrido y luego realizamos un click con el mouse.

En el caso que ocupemos el comando Sweep hay que tener en cuenta dos consideraciones importantes:

a) Que la forma cerrada no sea excesivamente grande respecto al “path” o recorrido.
b) Si tenemos un recorrido curvo, las curvas no deben ser excesivamente cerradas en caso que la forma a proyectar sea grande.

Esto es importante de considerar ya que si no se cumple alguna de estas condiciones, el comando no trabajará.

En el siguiente ejemplo se ha curvado más la spline y al ejecutar Sweep, el comando no funciona puesto que la cuerva del recorrido es demasiado cerrada como para proyectar la forma en ella.

Si invocamos a Sweep y no realizamos nada, podremos elegir el modo o tipo de superficie a obtener la cual puede ser una superficie (SU) o un sólido (SO), de forma similar a Loft y a Extrude. Esto es particularmente útil en caso que queramos obtener una superficie hueca como por ejemplo, una tubería.

Una de las cosas interesantes del modo surface es que en el caso de sweep se conservan las formas 2D iniciales las cuales podremos utilizar sin mayor problema.

En el siguiente ejemplo se ha aplicado el modo surface (SU) en cada sweep y notamos que el resultado es una superficie hueca.

Si invocamos a Sweep y luego seleccionamos la forma cerrada, este nos ofrece otras variantes bastante interesantes en el menú de subcomandos:

Estas opciones son:

Alignment: esta opción funciona específicamente en proyecciones diagonales y no coplanares, y especifica si la forma cerrada a proyectar está alineada para ser normal (perpendicular) a la dirección tangente de la trayectoria del recorrido o si no lo está. Si el perfil no es perpendicular (normal) a la tangente del punto de inicio de la trayectoria del recorrido, entonces el perfil se alinea automáticamente por defecto. Al introducir la opción NO, logramos que el perfil mantenga la posición en su plano original aunque realizará la proyección sin problemas.

Ejemplo de aplicación de la opción Alignment en una proyección de Sweep. En el primer sólido está activada la opción YES, mientras que en el segundo es NO y por ende notamos que la base de la forma cerrada se mantiene en el plano XY, mientras que en el primer sólido esta se proyecta de forma perpendicular al recorrido de forma automática.

Base point: permite definir un punto base en la forma cerrada para así iniciar la proyección desde este mismo. Por defecto al realizar la proyección de la forma cerrada toma el centro de gravedad de esta como base, pero al elegir esta opción se puede cambiar el punto base desde el cual partirá la proyección respecto al recorrido eligiendo cualquier punto de la forma cerrada. Lo activamos eligiendo la opción Base point y luego eligiendo el punto que queremos que sea base, para finalmente elegir el recorrido y terminar el sweep.

Sweep por defecto que toma el centro de gravedad de la forma cerrada 2D.

Sweep del ejemplo anterior pero esta vez se han asignado distintos puntos en las formas como base points, y el resultado final de estas proyecciones.

Scale: permite escalar la proyección en “escala” entre el inicio y el fin de esta. En esta opción podremos establecer un factor de escala de forma similar al comando Scale el cual hará que la forma se deforme en la escala determinada, de inicio a fin. Si colocamos en factor de escala 1 la proyección final no cambiará. Si el valor es mayor a 1, la escala será mayor y si es menor que 1 esta será más pequeña. Lo activamos eligiendo la opción Scale, luego colocando el factor de escala mediante valor numérico y presionando enter, para finalmente elegir el recorrido y terminar el sweep.

Ejemplo de aplicación de la opción Scale en una proyección de Sweep. En el primer sólido el valor de Scale Factor es 2, mientras que en el segundo es 0.5.

Twist: permite retorcer mediante un giro sobre su eje la proyección mediante un ángulo dado, entre el inicio y el fin de esta. En esta opción podremos establecer un ángulo de forma similar a Rotation el cual hará que la forma se tuerza en el ángulo determinado. Si colocamos en ángulo el valor 0 la proyección final no cambiará. Lo activamos eligiendo la opción Twist, luego colocando el ángulo mediante valor numérico y presionando enter, para finalmente elegir el recorrido y terminar el sweep. Dentro de Twist tenemos dos opciones que son:

Bank: la opción por defecto que nos permite ingresar el ángulo de rotación.
EXpression: nos da la posibilidad de ingresar o restringir el valor del ángulo mediante una expresión matemática.

Ejemplo de aplicación de la opción Twist en una proyección de Sweep. En el primer sólido el valor del ángulo es 90º, mientras que en el segundo es 180º.

El comando Revolve

El comando Revolve nos permite proyectar y/o revolucionar de forma circular una forma cerrada o abierta respecto a un “eje” el cual será el pivote de la revolución y puede ser definido previamente o también pueden serlo los ejes cartesianos. Se basa principalmente en la creación de un “perfil” el cual es la forma que proyectaremos y que puede ser abierto o cerrado, y un “eje” que será predeterminado para el modelado. Por ello es que para utilizar bien este comando debemos considerar lo siguiente:

– El perfil debe ser una forma unificada mediante Join para que la proyección sea correcta. Si no se unifica, Revolve sólo tomará en cuenta la primera línea seleccionada.

Ejemplo de formas revolucionadas: el primer perfil está unificado, mientras que el segundo no lo está y se ha tomado la línea superior derecha. Nótese la superficie plana en la segunda forma.

– Si queremos que el resultado sea un sólido el perfil debe ser abierto y tocar el eje predeterminado (o estar despegado y ser una forma cerrada), pues de lo contrario la proyección final será una superficie. Ahora bien, si queremos una superficie como resultado podemos realizar el perfil abierto sin tocar el eje.

Ejemplo de revoluciones usando el criterio anterior. De izquierda a derecha: el primero es un perfil que toca al eje y está unificado, el segundo es un perfil que no toca al eje pero es una forma cerrada unificada, y el tercero es una línea que no toca al eje y forma una superficie al ser revolucionada.

– También podremos crear un perfil abierto unificado sin necesidad de dibujar el eje, ya que podremos tomar sus extremos como tal para generar la forma.

En el ejemplo el perfil no tiene un eje asociado sino que se eligen sus dos extremos para generar el eje y formar el sólido.

De todas formas nos conviene dibujar la línea de “eje” ya que si bien se pueden elegir dos puntos cualquiera del espacio para definirlo, la ventaja de dibujarlo es que podremos elegir la misma línea o los dos puntos extremos y no tendremos confusiones al proyectar la forma final.

Para ejecutar el comando realizaremos los siguientes pasos:

– Invocamos el comando escribiendo REVOLVE luego y presionando enter o presionando el icono respectivo.
– Elegimos el perfil a proyectar y luego presionamos enter.
– Elegimos los dos puntos extremos de la línea de eje mediante click.
– Cuando nos muestra la proyección, podremos determinar el ángulo escribiendo un valor y luego presionando enter, si queremos el ángulo completo de 360° basta no hacer nada y presionar enter.

Si invocamos a Revolve y no realizamos nada, podremos elegir el modo o tipo de superficie a obtener la cual puede ser una superficie (SU) o un sólido (SO), de forma similar a Sweep.

Al estar en la fase en que nos muestra de la proyección (luego de elegir los puntos del eje), REVOLVE nos ofrece las siguientes opciones:

Estas alternativas son:

Object: nos permite elegir el eje directamente sin necesidad de definir puntos. Elegimos la opción y luego elegimos la línea de eje mediante un click.

X: permite elegir el eje X como eje de revolución de toda la forma. Al hacerlo la forma resultante se alterará según el plano en que esté el perfil.

Y: permite elegir el eje Y como eje de revolución de toda la forma. Al hacerlo la forma resultante se alterará según el plano en que esté el perfil.

Z: permite elegir el eje Z como eje de revolución de toda la forma. Al hacerlo la forma resultante se alterará según el plano en que esté el perfil. Si el perfil está en el plano perpendicular al eje Z esta opción no funcionará.

Si ya hemos elegido el eje y ya se nos muestra la proyección, podremos además definir las siguientes opciones:

Start angle: nos establece el ángulo en que queremos que parta la proyección. Por defecto es 0°, pero podremos cambiarlo escribiendo el valor del nuevo ángulo y luego presionando enter.

En el ejemplo vemos que en la primera imagen el valor de Start angle es 0°, en la segunda es 90° y en la tercera es 180°.

Reverse: permite invertir el sentido del giro en que se proyecta la forma. Por defecto la proyección se dibuja a favor del reloj, pero si elegimos esta opción se cambiará a contrarreloj.

EXpression: nos da la posibilidad de ingresar o restringir el valor del ángulo mediante una expresión matemática.

Como ya hemos visto la aplicación correcta y ordenada de estos comandos nos permitirán variadas opciones de modelado 3D, pero debemos tener en cuenta que si las ejecutamos la forma 2D se perderá de forma definitiva, y deberemos utilizar herramientas como extract edges para recuperarla.

Este es el final de este tutorial.

AutoCAD 3D Tutorial 10: Animación en AutoCAD parte 1, Walk and Fly

acad_walkandflyDesde los tiempos primitivos el hombre ha intentado representar el movimiento, pasando por inventos desde el zootropo hasta llegar a los dibujos animados modernos. Valiéndose del principio físico de la persistencia de la visión, en la que el cerebro humano retiene durante unas fracciones de segundo la imagen que captan sus ojos, los cineastas descubrieron que el cerebro, al ver una secuencia de imágenes a gran velocidad no es capaz de individualizarlas y por ende, este crea la ilusión de movimiento continuo. Esta secuencia de imágenes a gran velocidad es lo que conocemos como animación. En este tutorial realizaremos animación de recorridos mediante los comandos Walk and Fly de AutoCAD y aprenderemos a generar videos donde esta se representa.

Cuadros por segundo o FPS (Frames Per Second)

En animación cada una de las imágenes estáticas que la componen se denomina cuadro o frame, y la fluidez de esta dependerá de la cantidad de imágenes “en un segundo” que pasen ante nuestros ojos.

El concepto de “cuadros por segundo” o Frames Per Second (FPS) nos indica precisamente el número de imágenes que se muestran en un segundo de tiempo. Este formato se utiliza en cine y en televisión, y dependiendo del lugar geográfico se establece de la siguiente manera:

NTSC Norte y sudamérica, Japón, Chile. 29,97 FPS
(se asume 30 FPS).
PAL/SECAM Europa, Asia, Argentina, Brasil. 25 FPS.
FILM (cine) 24 FPS.

La animación en AutoCAD

A diferencia de 3DSMAX, AutoCAD no es un programa optimizado para animación ya que es más bien un programa técnico donde la precisión es lo más iportante, por ello los comandos de animación que tiene son muy limitados y además suelen estar ocultos en el programa. Por lo tanto, debemos invocarlos mediante su nombre respectivo o el ícono correspondiente. Para acceder al grupo de los comandos de animación iremos al espacio 3D Modeling y lo llamaremos clickeando con el botón secundario del mouse en cualquier parte de los grupos de la persiana Render y presionando el botón secundario del mouse, donde elegiremos Show Panels >> Animation.

acad_animacion00

Ejemplo de llamado al grupo de animación mediante el mouse.

Al activarlos aparecen los controles respectivos de animación donde podremos animar un modelo 3D de tres formas diferentes las cuales son:

acad_animacion01

– Walk (caminar).
– Fly (volar).
– Animation Motion Path (Animación por recorrido en movimiento).

En este tutorial estudiaremos la opción de Walk and Fly. Para ello, repetiremos el ejercicio del Tutorial 09 donde realizaremos la misma composición de objetos y aplicaremos materiales e iluminación. El resultado de estas operaciones debe ser algo similar a la imagen de abajo:

acad_animacion02

Ahora animaremos mediante la opción Walk. Como su nombre lo indica, Walk emulará el acto de “caminar” y para que funcione bien debemos estar siempre en vista perspectiva (si lo tenemos en isométrica el programa nos pedirá cambiar al modo perspective) y en la barra de comandos lo escribimos como 3dwalk. Si lo invocamos nos aparecerá el siguiente cuadro:

acad_animacion03

En este caso el punto rojo será la cámara desde la cual enfocamos la composición mientras que el punto verde será el target u objetivo de esta. Si nos colocamos en cualquiera de los dos puntos, realizamos click con el mouse y mantenemos el botón presionado, podremos ir moviendo la cámara y/o el target en el plano XY para encuadrar nuestra composición y si hacemos lo mismo pero en el medio del cono de target, podremos mover todo el conjunto. Si giramos la rueda del mouse haremos Zoom. Además tendremos a nuestra disposición los siguientes indicadores:

Position Indicator Color: nos permite cambiar el color del punto de la cámara (por defecto es rojo).

Position Indicator Size: nos indica el tamaño de este punto (Small, Medium o Large). Por defecto está en la opción Small.

acad_animacion03b

En el ejemplo se ha modificado Position Indicator Color a amarillo y su Size a Large.

Position Indicator Blink: nos permite definir si queremos que el conjunto parpadee o no. Por defecto está apagado (Off).

Position Z: nos indica la altura en que está la cámara respecto al plano horizontal.

Target Indicator: nos permite definir si queremos que se vea el cono de Target o no.

Target Indicator Color: nos permite cambiar el color del punto del target de la cámara (por defecto es verde).

Position Z: nos indica la altura en que está el target de la cámara respecto al plano horizontal.

acad_animacion03c

En el ejemplo se ha modificado Target Indicator Color a magenta y las opciones Size Z a 200 y Target Z a 0, donde vemos cómo cambia la vista de cámara.

Preview Visual Style: podremos cambiar el estilo visual de los elementos del cuadro (por defecto es Realistic).

Ahora haremos lo siguiente: moveremos la cámara y el target de la forma en que indica la foto de abajo y daremos en ambas posiciones Z el valor de 10. El resultado es el siguiente:

acad_animacion03d

Para animar lo que debemos hacer es presionar el botón REC (el círculo de la imagen siguiente) que está en los controles de animación y que veremos una vez que estemos dentro de 3dwalk.

acad_animacion03e

Lo presionamos y luego moveremos la cámara hasta la posición que indica la foto de abajo:

acad_animacion03f

Notaremos que en los controles de animación están activados lo sbotones Play y Stop. Si presionamos Play veremos el resultado de la animación en el viewport y si presionamos el botón Stop, guardaremos la animación, la cual se guardará siempre en formato AVI. El resultado de nuestra animación es el siguiente:

Animación resultante con los parámetros de Walk and Fly por defecto. Tiempo: 13 segundos.

Como se puede ver, en este caso AutoCAD nos guarda la animación del movimiento que hicimos en un lapso de tiempo que el programa guarda por defecto y por ende no podremos establecer una cantidad de tiempo de forma personalizada, pero podremos cambiar las opciones en Walk and Fly Settings (comando walkflysettings):

acad_animacion03g

En este cuadro podremos elegir si queremos que el cuadro de Walk (o de Fly) se muestre o no, cambiar el tamaño de los pasos en DU (step size) o definir cuántos pasos daremos en un segundo (Steps per second). Modificando las últimas opciones podremos dar más o menos tiempo o avanzar más lento o rápido según la opción que elijamos:

La misma animación anterior pero se ha modificado el parámetro Step Size a 12 DU, donde notamos que el tiempo de animación es menor que el anterior y se avanza más rápido ya que el tamaño de cada paso es más grande. Tiempo: 8 segundos.

La misma animación de arriba pero esta vez se ha dejado el parámetro Step size en 6 y se ha modificado el parámetro Steps per second a 4, donde notamos que el tiempo de animación es la mitad de la anterior y se avanza mucho más rápido ya que se da el doble de pasos en un segundo. Tiempo: 6 segundos.

Si presionamos REC, movemos nuestra cámara y luego detenemos la grabación dejaremos grabado ese movimiento y luego podremos ejecutar los mismos pasos anteriores para así poder mover de forma indefinida tanto la cámara y/o el target hasta que literalmente “detengamos” el video mediante Stop. Esto lo podemos utilizar para, por ejemplo, ejecutar animaciones más largas o que incluyan movimientos alrededor del proyecto, sin embargo debemos tomar en cuenta que como el tiempo dependerá del ajuste de los pasos, nos puede dar una animación muy larga o muy demorosa en renderizar, sobre todo si tenemos la iluminación y los materiales aplicados:

acad_animacion04

acad_animacion04b

acad_animacion04c

acad_animacion04d

acad_animacion04e

Secuencia de animación realizada mediante Walk moviendo la cámara alrededor de los objetos, y su resultado se muestra abajo. Tiempo: 1:18.

Una cosa muy intereante de este tipo de animación es que al presionar REC podremos realizarla mediante el movimiento de las teclas de dirección y el mouse con los cuales podremos indicar que el vuelo o la caminata avancen, miren hacia abajo y/o arriba según queramos, de forma similar a un videojuego. Las funciones son:

Tecla arriba (o W): Avanzar.
Tecla Izquierda (o A): Izquierda.
Tecla abajo (o S): Retroceder.
Tecla Derecha (o D): Derecha.

Click en el botón primario del mouse, mantenerlo presionado y arrastrar: mover hacia cualquier dirección (si además presionamos shift podremos ir hacia adelante y atrás).

acad_animacion06b

Si vemos el cuadro de Position Locator notaremos que el recorrido que vayamos realizando aparece en color rojo:

acad_animacion06

Animación resultante del recorrido anterior, usando las teclas de dirección y el mouse:

Ahora bien, si queremos guardar nuestra animación simplemente presionaremos el ícono de STOP y allí nos aparecerá el cuadro siguiente:

acad_animacion05

Aquí podremos dar un nombre a nuestro video y la ruta donde queremos colocar este en nuestro PC. Si clickeamos en la opción Animation Settings accederemos al cuadro de configuración de la animación:

acad_animacion05b

En este podremos determinar el estilo visual que queremos ver el video, el tamaño de resolución (por defecto es 320 x 240), el formato de video donde podremos elegir entre AVI, MPG, MOV y WMV y finalmente el FrameRate o formato de cuadros por segundo donde estableceremos la norma en que trabajaremos (por defecto es NTSC). Una vez definidos estos parámetros damos OK y se nos creará la animación previa.

Como se dijo antes, debemos tomar en cuenta que si queremos realizar la animación con la Iluminación y GI de AutoCAD lo debemos haremos mediante el comando Anipath ya que Walk and Fly sólo nos permite realizar una vista previa de la animación.

Para el caso de Fly el concepto es el mismo, pero con la diferencia que podremos movernos en todos los planos (Walk permite movernos sólo en el plano XY).

Este es el fin del Tutorial 10 parte 1.

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos.

Para el correcto modelado 3D es necesario seguir ciertas pautas o normas que si bien no son absolutas, muchas de estas son necesarias para evitar problemas de modelado o de pérdida de archivos en el futuro, o para que las labores del modelado mismo no sean excesivamente complicadas ni trabajosas ya que una de las claves de un correcto modelado 3D y de proyectos, es el ahorro de tiempo de trabajo y de recursos.

Por esto mismo, debemos tomar en cuenta los siguientes consejos o indicaciones previas antes, durante y después del modelado 3D:

1) Limpiar o borrar lo no utilizado en el archivo 2D

Usualmente cuando se trabaja en 3D se suele efectuar el levantamiento a partir de la planta, elevaciones y cortes 2D de un proyecto, pero en estos siempre se encuentran los elementos anotativos y de información tales como ejes, cotas, líneas especiales y normativa aplicada. Por ende, lo mejor que podemos hacer antes de efectuar el modelado 3D es borrarlas o en su defecto, apagar los layers respectivos. Si bien apagar los layers es una buena opción, recomiendo borrarlos ya que mientras más elementos tengamos en el dibujo, más pesará nuestro archivo final. Lo ideal es ir levantando los elementos 3D y luego borrar las cotas y/o líneas que usamos como referencia. En mi caso particular suelo eliminar todos los elementos normativos y de medida pues si hay alguna duda con la dimensión, basta utilizar el comando di (distance).

2) El dibujo debe estar bien trazado

Tal y como se enuncia en el tutorial de la vivienda 3D, las líneas deben dibujarse lo más continuas posibles evitando unir dos líneas a la mitad de un trazo. Al ser los trazos de tipo continuo evitaremos problemas derivados del uso de las herramientas de modelado 3D, sobre todo cuando ocupamos comandos como Presspull ya que este suele tomar el área y en casos puntuales, la medida de la línea traslapada. Por esto mismo es que cuando alguna de estas operaciones no funciona o lo hace de forma incorrecta, lo primero que debemos descartar es que sea por una falla del dibujo 2D.

Podemos unificar las líneas mediente comandos como join (J) o pedit para resolver el problema, pero como dije antes es mejor dibujarlas de un solo trazo de antemano.

3) Los elementos 2D deben estar en el mismo plano 2D

Esto quiere decir que no debe haber elementos “elevados” respecto al eje Z, de lo contrario no podremos convertir a 3D las formas pues la mayoría de las herramientas 3D sólo funcionan si las líneas o formas cerradas están contenidas en el mismo plano.

Vista en planta (top).

Vista isométrica.

Ojo con esto pues es muy común que las formas 2D aparentemente se vean sin problemas en la planta, por lo tanto es recomendable usar herramientas como orbit (comando orb) para asegurarnos que las formas estén contenidas en el mismo plano.

4) Asegurarse que las formas cerradas estén bien “cerradas”

Otra de las causas que las herramientas o comandos 3D fallen es que las líneas 2D no se intersecten en un punto o arista y lo mismo ocurre en caso que las líneas se traslapen, a excepción de algunos comandos como Presspull el cual sí funciona en el caso de los traslapes (ya que este toma el área que forman las líneas). Esto es muy importante advertirlo en elementos como muros o bloques de muebles, ya que a veces suelen estar separadas pero no se aprecian a simple vista, ni siquiera al hacer Zoom.

5) Borrar las líneas sobrantes

No pocas veces cuando realizamos nuestras plantas, se dibujan más líneas que se sobrescriben entre sí generando bastantes problemas sobre todo al extruir las formas; para remediar esto lo ideal es borrar todas y dejar sólo la definitiva. Esto además de resolver el problema hará más liviano el archivo con el modelo 3D.

Una herramienta muy buena e importante para ayudarnos a borrar las líneas sobrantes es el ayudante llamado Selection Cycling:

Al activar Selection Cycling, este nos permitirá seleccionar cualquier línea o forma de entre varias que tengamos traslapadas tal como se aprecia en el ejemplo:

6) Establecer criterios de trabajo con layers

Esto es fundamental para el buen desarrollo del levantamiento 3D. Si queremos trabajar en 3D lo haremos de la misma manera que en el dibujo bidimensional ya que también trabajaremos mediante layers. Como sugerencia, recomiendo renombrar los layers según categorías definidas y con el nombre de cada elemento constructivo, como en el siguiente ejemplo:

También se pueden renombrar los elementos 3D con un sufijo previo como 3D o 3D_, como por ejemplo: 3D_muros, 3D_losas, etc.

Si tomamos como base la planta 2D, podemos usar los mismos layers de nuestros elementos 2D para efectuar el levantamiento. Como se ve en el ejemplo anterior, el modelo 3D se ha dividido según cada elemento como por ejemplo muros estructurales, tabiques, núcleo rígido, etc.

7) Cuidado con los layers “0” y “Defpoints”

El layer defpoints se usa específicamente para contener las ventanas gráficas en el Layout o cuando queremos que ciertos elementos no se impriman en nuestro plano, por lo tanto, este layer NO debe usarse para contener objetos 3D, a menos que queramos que estos no se impriman en un plano.

En el caso del layer “0” recomiendo no colocar nada en la versión final de nuestro proyecto ya que este layer se usa más para realizar el modelo conceptual. Es decir, el modelo neutro sin asignar a layers.

Por esto mismo es que que primero modelaremos los elementos 3D en este layer y luego lo cambiamos a su layer correspondiente. También en el layer “0” dibujaremos las líneas de referencia o auxiliares que utilicemos para ciertas operaciones de modelado.

8) No todo se realiza mediante Extrude y/o Presspull

Otro fallo que se suele cometer en el modelado es creer que las únicas herramientas de modelado 3D son Extrude y sobre todo Presspull, y por ello puede ser frustrante si las líneas no se convierten en 3D al utilizar estos. Si esto pasa, recomiendo ver los puntos anteriores respecto a los 2D:

Si esto último no funcionara, lo mejor es recurrir al dibujo mediante primitivas Box o alguna otra ya que es igual de efectivo y además es sencillo de realizar, aunque algo más demoroso.

Recordemos que el modelado 3D puede realizarse de varias maneras y por ende podemos utilizar todas las herramientas disponibles que nos ofrece el programa.

9) Utilizar líneas de referencia

Al igual que en el caso de los dibujos 2D, en modelado 3D debemos realizar líneas temporales de referencia para modelar ciertos objetos o estructuras que no se podrían modelar de otra y además para hacer más fácil las operaciones. Estas líneas deberán ser borradas una vez que completemos nuestro modelo. Por eso es importante que estas queden en el layer “0” para luego facilitar el borrado.

10) Utilizar los bloques 3D para facilitar el modelado

Una de las facetas más desconocidas en el modelado 3D es el trabajo con bloques ya que comunmente asumimos que el bloque sólo es posible en el dibujo 2D lo cual es un error, ya que en el modelado 3D el concepto de “bloque” es esencial para la buena gestión del modelo 3D puesto que podemos convertir cada elemento constructivo que se repita de nuestro proyecto en un bloque y luego de esto copiarlo las veces que sea necesario en nuestro modelo, en lugar de efectuar una simple copia del elemento 3D ya formado y conocido como “3D Solid”.

En las fotos de ejemplo podemos ver los bloques de los elementos constructivos de un proyecto que veremos más abajo. Los bloques, a diferencia de los sólidos 3D o “3D solid” tienen dos grandes ventajas:

a) La primera es el hecho que podemos editarlos mediante el comando bedit y una vez en el espacio del bloque, podemos modificarlo del mismo modo que lo hacemos en AutoCAD 2D pero con la única desventaja que no podremos usar el comando UCS. Podemos salirnos presionando el botón Close Block Editor, y guardando los cambios.

Como ya lo sabemos, cuando guardemos el bloque esta modificación afectará a todos los bloques que sean copias del bloque origen. En no pocos casos necesitaremos modificar el bloque original pero sin perder este, y aquí tenemos otra ventaja que nos ofrece el bloque: podremos guardar bloques nuevos que sean generados a partir de un bloque standard ya guardado anteriormente.

Para entender esto, en la imagen de arriba vemos una viga metálica la cual es un bloque llamado respectivamente “viga”, y debido a necesidades del proyecto debemos crear vigas con la misma estructura de este bloque pero de diferente largo o con cortes como en este ejemplo. En este caso, editamos el bloque con bedit y modificamos el bloque según lo necesitemos:

Una vez realizados los cambios no podemos salir del espacio bloque puesto que deberemos salvar el bloque original. En este caso, heremos lo siguiente: vamos a la persiana Block Editor y una vez allí presionamos la flecha de la opción Open/Save, y luego clickeamos en la opción Save Block As:

Aparecerá la pantalla Save Block As y en el espacio Block Name, asignamos el nombre del nuevo bloque que queremos crear, en este ejemplo lo llamamos “viga002”:

Clickeamos en OK y con esto nos salimos del espacio bloque. Notaremos que el bloque original se conserva, mientras que el que guardamos es un nuevo bloque. Esto podemos confirmarlo si insertamos bloques ya que notaremos que el bloque “viga002” es un nuevo bloque y que el original llamado “viga” se conserva intacto. Esto podemos repetirlo todas las veces que queramos con uno o más bloques.

En el ejemplo, viga002 se ha cortado para que se entienda la idea anterior.

Dominar el concepto de bloque, crear copias de estos y editarlos mediante bedit es fundamental para el modelado 3D ya que nos ahorrará mucho tiempo de trabajo y el proyecto quedará mucho más limpio.

b) La segunda ventaja del bloque es la más evidente, y tiene que ver con el peso del archivo final. En muchos casos al trabajar en 3D el proyecto puede pesar muchísimos megas, de hecho no es extraño que haya modelos relativamente simples que pesen más de 70 mb. Esto ocurre fundamentalmente porque los elementos 3D son copias independientes unas de otras, aun cuando sean el mismo elemento modelado y copiado. Como el programa interpreta y calcula la cantidad de elementos disponibles en pantalla, a mayor número de elementos sólidos mayor es el cálculo que hace el programa y por ende mayor es el tiempo en que se representan en pantalla al igual que al realizar un render, y por ende podemos inferir que las “caídas” de los archivos se deben justamente al exceso de peso y en no pocos casos, a que algún elemento se encuentra mal modelado.

Como el bloque es en esencia el dato de un solo dibujo, el programa demora mucho menos en calcular y por ende el peso del archivo es mucho menor lo cual es una tremenda ventaja, en comparación con el trabajo tradicional con sólidos 3D. Aunque tengamos muchas copias de un bloque en pantalla, el programa leerá los datos de uno solo de ellos pues los restantes son “instancias” que dependen del bloque original, de forma similar a 3DSMAX. Con esta ventaja los modelos trabajados con bloques pueden pesar hasta un 95% menos respecto a que si lo trabajáramos sólo con “3D solid”.

Además de la evidente ventaja del peso, se nos facilitarán las operaciones de Zoom, Pan y Orbit en nuestro modelo 3D, además de poder cambiar con mayor facilidad de estilo visual, y gracias al bloque podremos insertar formas complejas en el proyecto. Sin embargo recomiendo no usar mucho los bloques 3D desde otras fuentes ya que puede ser confuso trabajar con ellos debido a las dimensiones y a los layers, además siempre es mejor ir modelando cada elemento de forma personal y luego convertirlo a bloque. En el caso que debamos modelar una forma compleja, es mejor realizarla en un archivo aparte y luego insertarla como bloque desde el archivo de nuestro proyecto.

En resumen, el dominar los conceptos y el trabajo con bloques hace la diferencia entre un archivo que se cuelga y otro que no.

11) Lo que no se ve no se modela: eso mismo, no tiene sentido modelar elementos en detalle cuando en nuestros renders estos no serán visibles. Por ejemplo, si queremos modelar una estructura de techo en detalle y la misma en un proyecto 3D, lo ideal es simplificar el modelado en el proyecto 3D y luego generar el modelado en detalle en otro archivo CAD.

Aplicando el mismo principio, si por ejemplo queremos realizar un render de un espacio interno con mobiliario en un proyecto genérico 3D lo mejor es tomar el archivo 3D, guardarlo con otro nombre, colocar la cámara en el interior y luego borrar todos los elementos del proyecto que no saldrán en el render.

 12) Aplicar materiales mediante la opción “Attach by Layer”: otro consejo importante es que una vez que definamos los layers, podemos definir la materialidad de los elementos 3D contenidos en estos mediante la opción “Attach by Layer”, explicada en el Tutorial de Materiales parte 2 en AutoCAD.

Esta opción hará que los materiales se apliquen de forma automática en los elementos que asignemos a los layers y por ende, nos ahorrará tiempo y trabajo.

13) Purgar el archivo en la fase final de este

el comando purge (purgar) es fundamental en nuestro modelo 3D puesto que nos limpiará el archivo de todos los elementos innecesarios de este como bloques que no se utilizan, layers, tipos de líneas no utilizadas, grupos, etc. lo cual hará más liviano el archivo y dará más orden al proyecto. Para ejecutarlo simplemente escribimos purge en la barra de comandos y aparecerá la ventana respectiva, clickeamos en la opción Purge All y comenzará la limpieza.

En algunos casos el comando purge nos preguntará por la limpieza de diversos elementos específicos como el de la imagen siguiente. En estos casos, podemos purgar elementos por elemento mediante Yes o clickeamos en Yes to All si queremos purgar todos al mismo tiempo, y repetimos la operación las veces que sea necesario.

La purga finaliza cuando desaparece el botón Purge All y aparece Close. Clickeamos este último botón y finalizamos, luego guardamos el archivo. Repetiremos la limpieza o purga las veces que sea necesario, o cuando tengamos listo nuestro modelo 3D.

14) Gestionar archivos DWG mediante Inserción de Referencias o XREF

XREF es una excelente herramienta que ayuda mucho a la gestión de proyectos pues este nos permite enlazar muchos archivos DWG en uno solo, ahorrándonos tiempo de trabajo y sobre todo, recursos de nuestro PC sobre todo si este no tiene las capacidades necesarias para el trabajo con modelos 3D complejos. En el Tutorial sobre XREF se habla en profundidad sobre este importante comando.

15) Y lo más importante… Realizar varias copias o respaldos de nuestro archivo

Aún cuando trabajar con bloques es relativamente seguro, no está exento de caídas. No olvidemos que en muchos casos el archivo se nos caerá sin remedio y no pocas veces perderemos gran parte o incluso todo nuestro proceso, por lo que el mejor consejo que puedo dar es que realicemos varias copias de nuestro proyecto 3D. Lo ideal es guardar mediante la opción Save As >> Drawing un archivo diferente cada 30 minutos. También podemos guardar el archivo mediante comandos como save, qsave o saveas.

La gran ventaja de guardar varias versiones es que no perderemos el proceso completo sino que sólo una parte y por ello si se nos cae la última versión, podremos regresar al archivo anterior y desde allí continuar trabajando. Por ello NUNCA se debe trabajar en un archivo único.

Espero que estos consejos sirvan a todos quienes trabajamos en AutoCAD 3D para optimizar la gestión de nuestros modelos. Para terminar el tutorial se muestran renders de un proyecto 3D realizado a partir de la gestión de bloques, y renderizado en AutoCAD:

Este es el final de este tutorial.

AutoCAD 3D Tutorial 05b: Guía interactiva sobre Materiales (PPT)

En este pequeño tutorial les presento una guía interactiva realizada en PPTX (Power Point 2010) sobre los materiales en AutoCAD 3D, donde se trata el tema de manera resumida y lo más clara posible. Este trabajo fue realizado gracias al Programa de Perfeccionamiento Docente Institucional (PPDI) de Instituto AIEP para el curso llamado “uso de medios”, el cual pretende dar a conocer al docente el potencial de las herramientas computacionales para así complementar la enseñanza en el aula.

Lo novedoso de esta presentación es que fue realizada mediante hipertexto, es decir, un sistema de hipervínculos entre las distintas diapositivas que funcionan de forma similar a una página web, permitiendo así la interacción del usuario con el archivo. Por esto mismo, para interactuar con esta basta abrir el archivo en PowerPoint e iniciar la presentación, para luego seguir las instrucciones indicadas en la diapositiva del menú.

Para descargar e iniciar de forma automática la presentación en PowerPoint, se debe hacer click en la imagen de abajo:

Si quiere descargar la Guía Interactiva PPTX comprimida en formato RAR, debe ir a la página de descarga de archivos de tutoriales.